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Abstract The paper deals with elastic thermal stres-
ses in an isotropic multi-particle-matrix system con-
sisted of periodically distributed spherical particles in
an infinite matrix, imaginarily divided into cubic cells
containing a central spherical particle. Originating
during a cooling process as a consequence of the
difference in thermal expansion coefficients between
the matrix and the particle, and investigated within the
cubic cell, the thermal stresses, as functions of the
particle volume fraction v, being transformed for v = 0
to those of an isotropic one-particle-matrix system, are
maximal at the critical particle volume fraction, repre-
senting a considerable value related to maximal
resistance of the thermal-stress strengthened multi-
particle-matrix system against mechanical loading. The
thermal stresses are derived for such temperature
range within which the multi-particle-matrix system
exhibits elastic deformations, considering the yield
stress and the particle-matrix boundary adhesion
strength. With regard to a curve integral of the
thermal-stress induced elastic energy density, critical
particle radii related to crack initiation in ideal-brittle
particle and matrix, functions describing crack shapes
in a plane perpendicular to the direction of crack
formation in the particle and in the matrix, and
consequently dimensions of a crack in the particle
and in the matrix are derived along with the condition
concerning the direction of the crack formation.
Additionally, derived by two equivalent mathematical
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techniques, the elastic energy gradient within the cubic
cell, representing a surface integral of the thermal-
stress induced elastic energy density, is presented to
derive the thermal-stress induced strengthening in the
spherical particle and in the cubic cell matrix. The
former parameters for v =0 are derived using the
model of a spherical cell with the radius
Derived formulae are applied to the SiC-SizN, multi-
particle-matrix system, and calculated values of inves-
tigated parameters are in a good agreement with those
from published experimental results.

R, — oo.

Introduction

Investigated usually by approximate computational
and experimental methods [1], thermal stresses repre-
sent an important phenomenon observed in materials.
With regard to material science, thermal stresses
originate in a composite material as a consequence of
the difference in thermal expansion -coefficients
between individual material components, consequently
influencing mechanical properties [2, 3], superconduc-
tivity [4, 5], diffusion processes [6, 7] and consequently
grain growth [8-10].

On one hand, representing resistance against
mechanical loading, regarding a multi-particle-matrix
system, thermal stresses depend on the particle volume
fraction v of a strengthening phase (a precipitate) of
the composite material, and accordingly are maximal
at the critical particle volume fraction, representing a
considerable value related to maximal resistance of
the thermal-stress strengthened multi-particle-matrix
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system [2, 3]. On the other hand, as a consequence of
the particle radius R greater than critical, the thermal-
stress induced energy depends on both the particle
volume fraction and the particle radius, and tends to
release by crack formation in a particle or in a matrix
[4, 5], as dependent on the difference in thermal
expansion coefficients between the material compo-
nents.

The thermal stresses as functions of a position given
by the coordinate x; induce the x;-dependent energy
density w accumulated in an arbitrary point in the
composite material. As presented in this paper, the
‘curve’ energy density W, as an integral of w along a
curve in the composite material, representing a func-
tion of the variable xy, is required for the determina-
tion of conditions of crack initiation and formation.

Neglecting a redistribution of the thermal stresses
during high-speed crack formation, the crack formation
analysed in this paper is accordingly related to brittle
particle and matrix.

Additionally, included in the potential energy gra-
dient W, the x;-dependent gradient Wj, representing
an energy barrier with the maximal value Wy,,, and
simultaneously ‘surface’ energy density as an integral
of w over the surface S in the composite material,
influences the coercivity of magnetic materials as well
as magnetic domain and dislocation structure [11].

As an example, a planar magnetic domain wall with
the normal x;, representing a front between magnetic
domains with and without ordered magnetic moments,
is shifted in a magnetic material along the axis x; from
the position x; =a to the position x; =b by the
change AH,, = H, — H, of the magnetic field intensity
H, where the position x; = b correspond to a local
maximum in the point B of the middle energy barrier

0] a b c Xy

Fig. 1 The energy barriers A, B, C of the potential energy
gradient W, as a dependence on the position x; in a composite
material. The energy barrier B exhibits the maximum for x; = b

as presented in Fig. 1. Consequently, the magnetic
domain wall moves along the axis x; to the position
x; =c at the constant intensity H, = H., being
stopped by the third energy barrier higher than the
second one. The position change of the magnetic
domain wall results in the change AM of the magnetic
moment M of the magnetic material. Accordingly, the
magnetic moment change AM,,, related to the position
change Ax=c—b at AH., = H. — Hj results in a
discrete change of the magnetization hysteresis loop,
inducing a voltage impulse in a pickup coil known as
the Barkhausen jump. The change AHp, and the
W, — x1 dependence, including the W, — x; function,
are reasons of the coercivity of the magnetic material
[11].

Considering the thermal-stress induced energy W
accumulated in the volume V of the solid continuum of
a general shape as presented in Fig. 2 in the form

W:/deV://Swdex7 1)

the parameter W, derived as

W‘Y:%—‘f: SwdS, (2)
represents the energy gradient along the axis x;, equal
to the ‘surface’ elastic energy density related to the
surface S perpendicular to the axis x;.

Additionally, the gradient W, is required to derive
thermal-stress induced micro- and macro-strengthen-
ing in the spherical particle and in the cell matrix
representing material components of the composite
material of a precipitate-matrix type.

X3

X1

X1

Fig. 2 The solid continuum of a general shape with the volume
V, the surface S L x; and the Cartesian system (Oxx;x3)

@ Springer
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Cell model

As an imagination considered for an analytical mod-
elling, the composite material of the precipitate-matrix
type characterized by aperiodically distributed precip-
itates with general shapes embedded in a matrix with
finite dimensions consisted of grains is replaced by a
system consisted of periodically distributed spherical
particles embedded in an infinite matrix, neglecting
grain boundaries. To derive the thermal stresses acting
in the model system, the multi-particle-matrix system is
imaginarily divided into identical cells with the shape
to depend on a particle distribution, and accordingly
the cell represents a part of the multi-particle-matrix
system related to one spherical particle. Consequently,
the thermal stresses are investigated within the cell,
and derived formulae are valid for any cell of the
infinite matrix [12-14].

Unfortunately, mathematical techniques to derive
the elastic thermal stresses in an isotropic multi-
particle-matrix system, i.e. in a system with isotropic
components, lead to two mutually incompatible ana-
lytical models. On the one hand, formulae for thermal
stresses of the first model related to an isotropic multi-
particle-matrix system, as presented in [13], are trans-
formable, on the condition of the particle volume
fraction v = 0, to those related to an isotropic one-
particle-matrix system, as presented in [15]. On the
other hand, a geometrical condition represented by
zero radial displacement on a cell surface, as presented
in [14], and accordingly shear thermal stresses and
strains are not considered within the first analytical
model. Conversely, the second analytical model related
to an isotropic multi-particle-matrix system, as pre-
sented in [14], including formulae for radial, tangential
and shear thermal stresses and strains, non-transform-
able on the condition v =0 to those related to an
isotropic one-particle-matrix system, considers the
condition of zero radial displacement on a cell surface.

Resulting from the particles distribution as presented
in Fig. 3, the infinite matrix is imaginarily divided into
cubic cells with the dimension d, representing an inter-
particle distance, and consequently the particle volume
fraction v of the multi-particle-matrix system, as the
ratio of the spherical particle volume V), =4nR%/3 to
the cubic cell volume V. = d°, is derived as [13]

() 0D .

where 7/6 results from d = 2R.
Due to the isotropy of the multi-particle-matrix
system, the shape symmetry of the spherical particle

@ Springer
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Fig. 3 The multi-particle-matrix system consisted of the period-
ically distributed spherical particles with the radius R, embedded
in the infinite matrix imaginarily divided into the cubic cells with
the dimension d, representing an inter-particle distance, and the
Cartesian system (Oxjxpx3) in the point O in the spherical
particle centre

and the cubic cell, the symmetrical distribution of the
cubic cells resulting from the matrix infinity, the
thermal stresses are accordingly sufficient to be inves-
tigated within one twenty-fourth of the cubic cell (see
Fig. 4), then for r € (0,r.), ¢ € (0,7m/4), v € (v34,7/2),
where r. =|OC|, v = Z(x2,0C34), C is an arbitrary
point on the cubic cell surface C;C,C5Cy, and then [13]

[P - @)
2cos@sinv
|OC1s| 1
= t Y = t . 5
V34 = arc an( CirCol arctan cos o (5)
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Fig. 4 The surface C,C,C3C, of one-eighth of the cubic cell, the
arbitrary point C on the surface C;C,C3C4 with the position
determined by the coordinates (., ¢, v), and the points P, P’ in
the planes xjx;, C3C4CsCg, respectively, where r. =|0C|,
|PP'| = d/2, O is the spherical particle centre, d is the cubic cell
dimension (see Fig. 3). The thermal stresses are sufficient to be
investigated within one twenty-fourth of the cubic cell, then for
re(R,re), ¢ €{0,n/4), ve (vs,n/2)
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Resulting from the first model [13], this paper
presents derivations of the elastic energy density w,
in the spherical particle (¢ = p) and in the cell matrix
(g = m), and consequently the ‘curve’ and ‘surface’
elastic energy density, W, and W, respectively, regard-
ing an elastic solid continuum represented by the cubic
cell with the central spherical particle. Considering the
isotropy of the multi-particle-matrix system, the cubic
cell is assumed to exhibit identical circular cracks
created in the planes xjx;, x1x3, xpx3. As presented
below in detail, the determination of the crack forma-
tion conditions considers the energy dW accumulated
in the infinitesimal volume dV of an infinitesimal prism
with the height PP’ = d/2 and with the surface area
dS = x;pdpdxy; of a basis in the plane xjx; in the
position x1; € (0,]0Cyy|) along the axis x12 C x1x2
(see Fig. 4). Consequently, we get

1 s (* 1
dWZ—/ dV:—S/ wdx; = Wexpp dxpp do,
v 3 Jp 3

3
(6)

and the xj,-dependent ‘curve’ elastic energy density
W, and W, in the intervals xp; € (0,R) and
x12 € (R,|OCyy|), respectively, is derived as

P r
W = / wp dx3 +/ wndxs, xp2 € (0,R), (7)
P

P//
P
Wo= [ wndns, xR 10Cul), ®)
P
where P’ is a point of intersection of the particle

surface with the abscissa PP’ || x3 for x1, € (0, R).

Similarly, considering one-eighth of the cubic cell,
the x;-dependent ‘surface’ elastic energy density Wy
and W, in the intervals x; € (0,R) and x; € (R,d/2)
(see Fig. 5), respectively, is derived as

Wsl=4</ WpdSp+/ WmdSrrI)» x1€<O7R>7 (9)

P m

WYZ - 4/ Wm dSmy X1 € <R7 d/2>7 (10)
SVH

where the surface S, is a part of the square surface
$185,8384 L x; related to the spherical particle (g = p)
and to the cell matrix (¢ = m) for x; € (0,R), and
S = 851525384 for x; € <R,d/2>

With regard to the section ‘“Theoretical background’
representing a contribution to the first analytical model
presented in [13], this paper is accordingly suitable for
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Fig. 5 The surface $15,53S54 L x; in the position x; € (0,d/2) in
one eighth of the cubic cell (see Figs. 3, 4)

material scientists to be able to determine thermal-
stress loading including the thermal-stress induced
strengthening and the conditions of crack initiation
related to the spherical particle and to the cell matrix as
material components of the precipitate-matrix type.
With regard to the crack initiation and consequently the
crack formation, brittle material components are con-
sidered, and the redistribution of the thermal stresses
during the high-speed crack formation is neglected.

Derived formulae for the critical particle radii
resulting in the crack initiation in a particle and in a
matrix, and the critical particle volume fraction result-
ing in maximal resistance against mechanical loading
enable to predict and design properties of composite
materials with adequate accuracy, as additionally
confirmed by a good agreement of calculated values
of investigated parameters for the SiC-SizN, multi-
particle-matrix system with those from experimental
results [11, 16].

Additionally, with regard to theoretical physicists,
derived formulae for the x;-dependent gradient W,
representing an energy barrier with the maximal value
Wamax, both presented in the section ‘Theoretical
background’, can be incorporated to physicist-created
analytical models describing the interaction of the
thermal-stress induced energy barrier with dislocations
or magnetic domain walls.

Theoretical background

Isotropic multi-particle-matrix system

Thermal stresses

The thermal radial and tangential stresses, ¢, and o,

gy, derived in the system of the spherical coordinates

@ Springer
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X3 Xy Xy
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Fig. 6 The axes x,, x,, x,, and the point P with the position
determined by the coordinates (r = |OP|, ¢, v), where O is the
spherical particle centre. The radial and tangential stresses in the
particle (¢ = p) and in the matrix (¢ = m), 6,5 and 6yq, 0,4, act
in the point P along the axes x, and x,, x,, respectively

(r, @, v) related to the Cartesian system (Oxix,x3) (see
Fig. 6), are investigated in the point P of a continuum
along the axes x, and x,, x, of the Cartesian system
(Px,;x,x,), where r is the distance from the spherical
particle centre O.

Resulting from the analytical model presented in
[13], the radial and tangential stresses of the cubic cell,
acting in the spherical particle (¢ = p) for r € (0,R)
and in the cubic matrix (g = m) for r € (R,r.) (see
Eq. 4), o,y and 0,4, 0.4, respectively, have the forms

Orp = Ogp = Oyp = —Pp, (11)

1— (?)3 } (12)
@ @

where ¢ >0 and ¢ <0 represent the tensile and
compressive stresses, respectively.

The compressive or tensile particle-matrix boundary ra-
dial stress, p >0 or p, <0, respectively, is derived as [13]

Orm = _pb{1 + ¢C6

Opm = Oym = —Pb{l + Co

T;
Pp = C7/T (ocm — Otp) dT, (14)

where the coefficient ¢; (i = 1 — 10) is presented in the
section Appendix (see Eqs. 116-125); T; and T are the
initial and final temperatures of a cooling process,
respectively; o, is the thermal expansion coefficient of
the particle (¢ = p) and the matrix (¢ = m). Consider-
ing «, to be temperature-independent, the integral
J7' 0 dT is replaced by oy (T; — T).

@ Springer

Temperature range of cooling process

With regard to a real composite material as the precip-
itate-matrix ~ system, the initial temperature
T; < (0.35 - 0.5),, represents the relaxation temperature
of the multi-particle-matrix system below which the stress
relaxation does not occur as a consequence of thermal-
activated processes [11, 16], where T, is the minimum of
the set {Tp, Tyum}, and T,,,p, Ty, are melting points of
the precipitate (= particle), the matrix, respectively.

The thermal stresses exhibit an maximal value on
the particle-matrix boundary, acted by the radial
stress, p, (see Eq. 14). Accordingly, the presented
derivations are considered in the temperature range
T € (T., T;), where T, is the critical final temperature
of a cooling process at which the stress, |py| = 0,4,
where o6y = 0yq O 0y = 0y is a yield stress in
compression or tension related to the compressive or
tensile stress, p,>0 or p, <0, respectively, and if
Oyp <Oy OF G,,>0y, then o,y =0y, O 0y = Oy,
respectively. With regard to Eq. 14, the critical tem-
perature, T, can be derived from

T;
C7/ (rxm - ocp) dT‘ — 0y =0, (15)
T,

for a real isotropic multi-particle-matrix system by a
numerical method, and considering «, (¢ = p,m) to be
temperature-independent, 7, has the form

g
TC:Ti—¢. 16
7 (am — )] (o)

If the particle-matrix boundary bond is character-
ized by the adhesion radial stress, p,, and loaded by the
tensile radial stress, pj, <0, the presented derivations
are considered for |p,| < p,, the critical temperature,
T,, related to the condition, |ps| = p,, can be derived
from Eq. 15, or has the form given by Eq. 16, both for
Oyq — Pa- If  To>T,, the presented derivations are
considered in the temperature range 7 € (7,, T}).

Finally, with regard to plastic-deformable and
ceramic multi-particle-matrix systems, a contribution
to thermal stresses at temperature 7 < T, is released by
plastic deformation and the system cracking [11, 16],
respectively.

Elastic energy density

Applying the Hooke laws for an isotropic continuum [1]

e11 = s1on + si2(on + 933), (17)



J Mater Sci (2007) 42:1202-1227 1207
&0 = S11022 + s12(011 + 033), (18) 3p? /
W = / Wy dx; = % (Sup + 2S12p) R — x%,

€33 = 511033 + 512(011 + 022), (19) firs

X1 € <07 R>a (23)
into the formula for the elastic energy density [1]

5 Wcrnl:/ Wde3
1 P,P3
w = 5 Z:S Sijo'ij, (20) 5 13
1j=1- 3 47'(

:% SC§(S11m +2510m) | R (§> —24/ R? —x%

and with regard to ¢;, g;; =0 (i # j) and the subscript

transformations, 11 — r, 22 — ¢, 33 — v, the elastic
energy density of the thermal stresses in the spherical
particle and in the cubic cell matrix, w, and w,,
respectively, are derived as

3p}

wp=-—"7" (s11p + 2812p) (21)

3p? R\°
W = % 2C§2;(S11m + 2510m) + Cé(Snm — S12m) (7> .

(22)

where the elastic moduli, sq14, 5124 [1], for the particle
(¢ = p) and the matrix (g = m) are presented in the
section Appendix (see Egs. 114, 115).

Curve integral of elastic energy density

The curve integrals within the cubic cell, W,,, W,
and W, as integrals of w,, w,, and w,, (see Egs. 21,
22) along the abscissae P1P,, P,P; and P4Ps in
the plane xjx3 in the positions x; € (0,R) and x; €
(R,d/(2cos ¢)) (see Fig. 7), respectively, as the elastic
energy ‘curve’ density, equivalent to those along the
abscissae in the planes x1x;, xpx3 due to the isotropy

of the multi-particle-matrix system, are derived as

X3 Ps Ps
d/(2cosp)
e\ S
4
X12
O X1 Pl P4
X]

Fig. 7 The abscissae P;P,P; and P4Ps in the plane xi,x3 (see
Fig. 4) in the positions x; € (O,R) and x; € (0,d/(2cos ¢)),
respectively, perpendicular to the axis x1,, where xj; C x1x; and
P = <1(X12,X1) < (0, 7'[/4)

+ 2R (S11m—S12m)
5
2R(3v)'/3

. VR ()P 432 (30)
x1€(0.R), (24)

x< 1

4n

3p2R 13
Wemp = /P4Ps Wy dxs = 2}6 5cE(S11m +2512m) (ﬁ)

RV
+ 2 (S11m—S12m) <—)
)

B 2x1(3v)/3
VR (Am) 1432 (3v)

X1 € <R,§>, (25)

where ¢ = Z(x1x12) € (0,2n) and the axis x1, C x1x2

(see Fig. 4); |P\Py|=/R2—x}  |P,Ps|=d/2—

R?2—x? and |P4Ps|=d/2 for x; € (0,R) and
x1 € (R,d/2), respectively. With regard to the term
r~% in Eq. 22, and due to the isotropy of the multi-
particle-matrix system, the elastic energy accumulated
in the cubic cell matrix between the points P, and Ps,

and between the points P4 and Ps, is equal to that

5

x 1

accumulated between the points at radii » = |OP;| = R

and r=|0OP;| = \/(d/2)2+x%, and at the radii
r=|0OPs=x; and r=|0OPs|= \/(d/2)°+x}, for

x1 € (0,R) and x; € (R,d/2), respectively. Accord-
ingly, the term r~°dx; (see Egs. 22-24) is replaced by
r~6dr, where r € (R,|OP;|) and r € (x1,|OPs|) for
x1 € (0,R) and x1 € (R,d/2), respectively.

Particle and matrix crack initiation and formation
Provided that p, <0 and then for o, <a,, or py>0

and then for o, >a, (see Eqgs. 11-14), the spherical
particle or the cubic cell matrix are acted by the tensile

@ Springer
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thermal stresses, or the tensile radial thermal stress
and the compressive tangential thermal stresses,
respectively, and consequently, as a consequence of
releasing of the elastic energy of the thermal stresses,
equal circular cracks are assumed to be equivalently
created in the planes x1xp, x1x3, Xxpx3 in the spherical
particle or the cell matrix (see Fig. 6), due to the
isotropy of the multi-particle-matrix system. Resulting
from the isotropy of the multi-particle-matrix system,
the formulae (23)—(25) are also related to the plane
Xjx3, and accordingly the particle or matrix cracks,
symmetrical with respect to the formation plane xix;
(see Figs. 8-13), exhibit the same shape in all
planes xjpx3, where the axis X1 C x1x, and
@ = Z(x1x12) € (0,27) (see Fig. 4).

The curve integrals, W, and W, (see Eqgs. 23,
24), represent decreasing and increasing functions of
x1 € (0, R), respectively, both depending on the param-
eter R, where (W), .= 0, and accordingly the sum,
W, + Weni, is a decreasing, increasing or decreasing—

X3

drn

X12

O Ip
d/(2coso)

Fig. 8 The particle crack initialized and consequently formed in
the plane x1x3 (see Fig. 4) for R>R;,; from the particle centre,
O, to the particle surface; the particle crack radius, r,, for
R (Rp1,Rp2)

X3

d/2

X12

O I'p
d/(2cos)

Fig. 9 The particle crack initialized and consequently formed in
the plane xi,x3 (see Fig. 4) for R> R, from the particle surface
to the particle centre, O; the particle crack radius, r,, for
R € (R, Ryt)

@ Springer

X3

d/(2coso)

dr2

I'p

\ X12
Olrol_|

Ip2

Fig. 10 The particle crack simultaneously initialized and formed
in the plane xpx3 (see Fig. 4) for R>R, = R, from the
particle centre, O, to the particle surface, and vice versa; the
particle crack radii, r,; and r,,, of the disconnected cracks for
R € (Ry1,Ry12); the position, r,, of the minimum of the
interconnected cracks for R > R,/

X3

d/(2cosp)

dn

X12

Im2

Fig. 11 The matrix cracks initialized and formed in the plane
x1px3 (see Fig. 4) from the position x; =0 to the position
x1 € (0,71), x1 € (0,R) and from the position x; = R to the
position x1 € (R, ry2), x1 € (R,d/(2cos ¢)) for R € (Rn1,Rum),
R >R, and R € (Ry2, Ryu3), R > R,3, respectively; the matrix
crack radii, r,,,1, "o

X3
d/(2cosp)
Q
=l
=4
™ X12
O I'mi
I'm2

Fig. 12 The matrix cracks initialized and formed in the plane
x12x3 (see Fig. 4) from the position x; = R to the positions
X1 € (rp1,R), x1 € (0,R) and x; € (R, 1), x1 € (R,d/(2cos p))
for Re (Rmz,Rm1>, R>R,; and R € (Rmz,Rm3>, R > R3,
respectively; the matrix crack radii, 7,1, 72
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X3
d/(2cosp)
I'mi1
a
o
I'mnt
=4
™ X12
Of rmi2
'm2

Fig. 13 The matrix cracks simultaneously initialized and formed
in the plane xp,x3 (see Fig. 4) from the positions x; =0 and
x1 =R to the positions x; € (0,7,11), x1 € (0,7,1) and
x1 € (rmi2, R), x1 € (rm1,R) for R € (Ryn,Ru12), R > Ry,
respectively, and from the position x; =R to the position
X1 € <R,}’m2>, X1 € <R~, d/(ZCOS (/))> for Re <Rm2aRm3>7
R > Ry, respectively; the matrix crack radii, 711, 7,12, Of the
disconnected cracks; the position, r,,;, of the minimum of the
interconnected cracks

increasing dependence on x; € (0,R), exhibiting a
minimum as a function of the parameter R. With
regard to the decreasing, increasing or decreasing—
increasing x;-dependence of the sum, the circular
particle crack is thus formed from the particle centre,
O, to the particle surface (see Fig. 8), vice versa
(see Fig. 9), or simultaneously from the particle centre
and the particle surface (see Fig. 10), resulting
from the conditions, (W, + Wcml)x1:o> (Wem)y, —g>
(Wep + Wcml)xlzo <(Wemt),_g or (Wep + Wcml);q:o:
(WCMl))q:R’ from which the coefficient, c¢o
(see Eq. 124), is determined as c¢y>0, c¢9<0 or
cg =0, and consequently, the function, f,, represents
a decreasing, increasing or decreasing-increasing
x1-dependence, respectively.

Similarly, with regard to c9>0, c9<0or cg = 0, the
matrix crack is formed from the position x; = 0 to the
position x; = R (see Fig. 11), vice versa (see Fig. 12),
or simultaneously from the positions x; =0 and
x1 = R (see Fig. 13), respectively.

Considering c¢g >0, cg <0and cg = 0, critical particle
radii, as reasons of the formation of particle and matrix
cracks of the infinitesimal length, are determined with
respect to positions of the maximum value of
Wep + Went, then for x; =0, xy =R and x; =0 or
x1 = R, respectively.

The coefficient ¢y depends on the particle volume
fraction, v, and on the material parameters of the
particle, $11,, S12p, and considering ¢y as a function of v,
the critical particle volume fraction, vy € (0,7/6),
related to determination of a direction of the particle
cracking, can be derived from the condition, c¢9 =0,

for a concrete isotropic multi-particle-matrix system by
a numerical method.

Particle crack initiation and formation I After the
particle crack formation, the elastic energy,
dW, = (We, + W )x1 de dxy /3, accumulated in the
cubic cell infinitesimal volume of the dimensions
x1de x dx; x d/2, and being a consequence of the
particle cracking of the infinitesimal surface area,
dS, = x;deds,, is in the equilibrium state with
the energy of an infinitesimal crack surface of
the particle, dW,, = Vp ds,dx;de, and then
dW, = dW,, [11, 16], where the multiplication factor
1/3 results from the formation of equal circular particle
cracks in the planes x1x;, x1x3, xpx3 (see Fig. 6);
Vp = sllpK%Cp [11, 16] is the particle crack surface energy
per unit surface area; Kjc, is the particle fracture

toughness; ds, = dx;\/1+ (9f,/ l)2 [17] is infinitesimal
length of the curve, f,, describing the particle crack
shape in the interval x; € (0,R) (see Figs. 8-10),
representing a function of x; and the parameter R,
corresponding to the x;- and R-dependence of
Wep + Weni. With regard to dW, = dW,,,, we get

of, 1
=P 4 —
8)(1 351117K1Cp

2
\/(ch + Wcml)zf (3sllpK;Cp) )
(26)

and accordingly, the energy condition for the particle
crack formation, is derived as

ch + Wcml - 3S11pK%Cp >07 (27)

fulfilled for the particle radius greater than critical, as a
reason of the particle cracking.

Considering such v when c¢9>0 (see Eq. 124), the
critical particle radii, R,; and R,,, as a reason of the
crack initiation and consequently the crack formation
in the particle from the particle centre, O, to the
particle surface, and as a reason of the particle crack
tip on the particle surface (see Fig. 8), represent roots
of Eqgs. 28 and 29 in the forms

(Wep + Wcml)xl:0—3s11pl<%cp =0, (28)
(Wep + Wcm1)x1:R—3snpK;cp =0, (29)

as functions of the variable R, resulting from the
condition for the particle crack tip in the particle
centre in the position x; =0 and on the particle
surface in the position x; =R, (9f,/0x1), (=0
and (9f,/0x1), =0, respectively, related to an
ideal-brittle particle [11, 16], where R, <R, for
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c9>0. With regard to Eqs. 23, 24, 28,29, R, and R,
are derived as

1 1(pby
Ryt 2s11p \Kicp

1 2 4\ 13
X Sllp+2s12p+ﬁ 5¢g(S11m +2812m) <§> )

3\ /3
+C(S11m — S12m) 1—32(5) ,

(30)
11 (Pb )2
RP2 2()S11p KICp
4\ 13
X 5C§(S11m+2512m)(3v>
s
2(3v)/3
4+ (S11m—S12m){ 1 — Bv)
\/(477:)2/3—|—4(3v)2/3
(31)

The particle crack radius (see Fig. 8), r,, determin-
ing the particle crack tip position, representing a root
of the equation

ch + Wcml - 3sllpK%Cp = O, (32)

as a function of the variable x; and the parameter
R € (Ry1,Ry»), resulting from the condition for the
particle crack tip in the position x; = r,, (0f,/ Bxl)xlzrp
=0 (see Eq. 26), can be derived from Eq. 32 for a
concrete isotropic multi-particle-matrix system by a
numerical method, where r, =0 and r, = R, for
R = Ry and R = R, respectively.

With regard to Eq. 26, the function, f,, describing
the particle crack shape in the intervals x; € (0,7,)
and x; € (0,R) for R € (Ry1,R) and R > Ry, (see
Fig. 8), respectively, has the form

1
=075
3S1 IPKICp

X [ﬁp - / \/(ch + Wcml)z_ (3811pK%C,,)2dX11 ;

(33)

fo

representing a decreasing function of x;, and
accordingly the sign — in Eq. 26 is considered. The
integral can be derived for a concrete isotropic multi-
particle-matrix system by a numerical method, and

@ Springer

with respect to the boundary conditions given by
Egs. 34 and 35 in the forms

fr =0, (34)
fp =0, (35)

related to the particle radius R € (Rp1,R;,) and
R > Ry, respectively, the integration constant, f3,,, is
derived for R € (Rp1,R;) as

By = l / \/ (Wep +Wcm1)2—(3sup1<%c,,)2dx11 ,

X1 =TIp,

R=Rp, x1=Rp,

X1=1p
(36)
and for R > R, as
2
ﬁp = [/\/(WCP+Wcm1)2—(3S11PK%C17) dx1‘|
: X1=Rp2; R=R;»
(37)

Particle crack initiation and formation Il Considering
suchvwhen cg <0 (see Eq. 124), the critical particle radii,
R, and R,,; (see Egs. 30, 31), are a reason of the crack
initiation and consequently the crack formation in the
particle from the particle surface in the position x; = R
to the particle centre, O, and a reason of the particle
crack tip in the particle centre in the position x; =0
(see Fig. 9), respectively, where R, <R for c9<O0.

With regard to Eq. 26, the function, f,, describing
the particle crack shape in the intervals x; € <rp,R>
and x; € (0,R) for R€ (Ry,Ry) and R > Ry (see
Fig. 9), respectively, has the form

1
P = 2
3S11PKICp

2 2
ﬂp+/ (ch+Wcml) 7<3S11pK%CP) dx; |,

(38)

X

representing an increasing function of x;, and
accordingly the sign + in Eq. 26 is considered. With
respect to the boundary conditions given by Egs. 39
and 40 in the forms

fr =0, (39)

x =0, f,=0, (40)

X1 = rp,
R =Ry,

related to the particle radius R € (R, Rp1) and
R > Ry, respectively, the integration constant, f3,,, is
derived for R € (Ry»,Ry1) as
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B, =— [/ \/(ch + Wcm1)2(3811pK%cp)2dx1] ;

X1=Ip
(41)
and for R > Ry as
2 » \?
By =— (Wep+Wem) *<3S11pK1Cp> dx;
x1=0; R=Ry
(42)

The particle crack radius (see Fig.9), r, (see
Eq. 41), represents a root of Eq. 32, as a function of
the variable x; and the parameter R € (R, R,1), and
can be derived from Eq. 32, along with the integral in
Eq. 38, for a concrete isotropic multi-particle-matrix
system by a numerical method, where r, =0 and
rp, = Rp1 for R =R, and R = R, respectively.

Particle crack initiation and formation III  Considering
such v when c¢9 =0 (see Eq. 124), the critical particle
radii, Rp1, R, and R, are a reason of the crack
initiation and consequently the crack formation in the
particle simultaneously from the particle centre in the
position x; =0 and from the particle surface in the
position x; = R, and a reason of the particle crack tip
in the position x; = R/2 (see Fig. 10), respectively,
where Ry =Ry for  c¢9=0, and R,12>Rp
represents a root of Eq.28 as a function of the
variable R on the condition x; = R/2 in the form

11 <pb )2
Ry12 20811, \Kicp

5 4\ '3
X | Scg(s11m +2512m) 3 -3

2(3v)1?
(4m)**+(3v)*/?

+ C%(sllm _SIZm) 1-

(43)

The particle crack is described by the functions,
f,1 and f,,, decreasing and increasing in the inter-
vals x1 € (0,7p1), x1€(0,r,) and  x; € (r,,R),
x1 € (rp, R) (see Fig. 10), respectively, related to the
disconnected, interconnected particle cracks, as de-
pended on the parameter R. The particle crack radii,
Tpi, Tp2, and the position in which the function,

fp =fm + fp2, describing the interconnected particle
cracks exhibits a minimum, r,, represent roots of
Eq. 32, as a function of the variable x; and the
parameter R, for R € <Rp1,Rp]/2> and R, respec-
tively, and can be derived from Eq. 32 for a concrete
isotropic multi-particle-matrix system by a numerical
method, where 7,1 =7, =0 and 7y =rp = Ry12/2
for R= R, and R = Ry, respectively.

With respect to the boundary conditions given by
Eqgs. 44— 46 in the forms

X1 =11, Jfp1=0, (44)

X1 = Ip2, fp2 :07 (45)
R

R = Rpl/27 X1 = P21/27 fpl :fpz = 07 (46)

related to the particle radius R € (R,1,R,1/2) and
R > R, /,, respectively, the functions, f,; and f,,, are
given by Egs. 33, 36, 37, and Egs. 38, 41, 42, on the
conditions x; = r,1 and x; = r,, in Eqgs. 36 and 41 for
R e <Rp1,Rp1/2>, respectively, and on the condition
X1 = Rp1/2v R= Rp1/2 in EqS. 37, 42 for Rp1/2-

Matrix crack initiation and formation I Considering
the particle-matrix boundary adhesion radial stress, p,,
provided that p,>0 and then for ,<a,, the c,-
multiple of 6,,,, Gym, O, and c2 -multiple of w,, w,,,
the latter resulted from the dependence, w o ¢° (see
Eq. 20), are concerned in the matrix crack formation,
where the multiplier, c,, is derived as

Pa
c,=1——. 47
a o (47)

After the matrix crack initialization and formation,
the elastic energy related to the positions x; € (0, R)
and x; € (0,d/2), dW,, = c2(W¢, + W )x1 depdxy /3
and dW,, = cﬁWcmle do dx; /3, respectively, accumu-
lated in the cubic cell infinitesimal volume of the
dimensions x;de x dx; x d/2, and being a conse-
quence of the matrix cracking of the infinitesimal
surface area, dS,, =x;deds,,, is in the equilibrium
state with the energy of an infinitesimal crack surface
of the matrix, dW_gn =7,,dsmidx1de (i =1,2), and
then dW,, = dW_y,; [11, 16], where the multiplication
factor 1/3 results from the formation of equal circular
particle cracks in the planes xix;, x1x3, x2x3 (see
Fig. 6); y,, = sumK%Cm, where the multiplication factor
1/3 results from the is the matrix crack surface energy
per unit surface area; Kjc, is the matrix fracture

toughness; ds,,; = dxi1\/1+ (i /(’9x1)2 [17] is infinites-

@ Springer



1212

J Mater Sci (2007) 42:1202-1227

imal length of the curves, f,,; and f,,,, describing the
matrix crack shape in the intervals x; € (0,R) and
x1 € (R,d/(2cos ¢)) (see Fig. 11), respectively, repre-
senting functions of x; and the parameter R, corre-
sponding to the x;- and R-dependence of W,,;, where
@ = Z(x1x12) € (0,27) and the axis x12 C x1x2 (see
Fig. 4). With regard to dW,, = dW ,;, we get

8fml _ 1 4 2 2 2

ox1 N :l:3S11mK%Cm \/Ca (WCP + Wcml) (3S11mK1CM) ’
(48)

8fm2 _ 1 4TVW2 2 2

ox1 3sumKag,, \/CaWc‘mZ (s11mKicn)" (49)

and accordingly, the energy condition for the particle
crack formation, is derived in the interval x; € (0, R) as

E(Wep + Wemt) — 3s11mKie,, >0, (50)
and in the interval x; € (R,d/(2cos ¢)) as
EWena — 3s11mKie,, >0, (51)

both fulfilled for the particle radius greater than
critical, as a reason of the matrix cracking.
Considering such v when c¢9>0 (see Eq. 124), the
critical particle radii, R,,; and R, as a reason of the
crack initiation and consequently the crack formation
in the matrix from the position x; = 0 to the position
x1>0, and as a reason of the matrix crack tip in the
position x; = R (see Fig. 11), represent roots of
Eqgs. 52 and 53 in the forms
Ci(ch + Wcml)

0=3511mKicp =0, (52)

X1=

ca(Wema),—r—3811mKjc,,, = 0, (53)

as functions of the variable R, resulting from the
conditions for the matrix crack tip, (9fm1/1),,_o=0
and (0fm /1), _g= 0, respectively, related to an ideal-
brittle particle [11, 16], where R,,;; <R, for cg > 0. With
regard to Egs. 35, 36,52, 53, R,,; and R,,; are derived as

11 (capb>2
Rt 2511m \Kicm
1 4\ 13
X <511p+2312p+m{56§(511m+2512m) [<§> -2

5/3
+C€(S11m—812m) l1—32 (i—;) ‘| }) .

@ Springer

1 <capb)2
Rz 20811m \Kicm

5 47\ V3
x| Scg($11m +2812m) 3

5
2(3v)1/3

(4m)**+4(3v)*3

+Cé(sllm*312m) 1-
(55)

The matrix crack radius (see Fig. 11), r,,;, deter-
mining the matrix crack tip position, representing a
root of the equation
2(Wep + Wemt) = 3s1umKie,, = 0, (56)
as a function of the variable x; and the parameter
R € (Ryu1, Ryp), resulting from the condition for the
particle crack tip in the position x; =rp1, (9fm1/
oxy), _, = 0 (see Eq. 48), can be derived from Eq. 56
for a concrete isotropic multi-particle-matrix system by
a numerical method, where r,,; =0 and r,; = R, for
R = R,;; and R = R,;», respectively.

With regard to Eq. 48, the function, f,,, describing
the matrix crack shape in the intervals x; € (0,7,;1)
and x; € (O,R) for R € (Ry1,Rp) and R > R, (see
Fig. 11), respectively, has the form

o
3s11mKiep,

fml

X {ﬁm —/\/Cﬁ(ch+W0m1)2_(3811mK%Cm)2dx1 )
(57)

representing a decreasing function of x;, and accordingly
the sign - in Eq. 48 is considered. The integral can be
derived for a concrete isotropic multi-particle-matrix
system by a numerical method, and with respect to the
boundary conditions given by Egs. 58 and 59 in the
forms

X1 = Fm1, fmlz \/Rz_r;zﬂp (58)
x1=R,  (fm1)y—r= (fm2)y,—r> (59)

related to the particle radius R € (Ry1,R,2) and
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R > R,p, respectively, the integration constant, f,,,1, is and for R > R,,; as
derived for R € (R,;1, Rymp) as
_ _ aWw2 2 \2
ﬁml — 3sllmK%Cm R2 _ rr2n1 ﬁm] _ﬂmZ {/ |:\/caWcm2 (3S11mK1Cm>
2 2
o T e S e (PR 2 S e S L S
X1=Im1 =
(60) (64)
and for R > R, as where the function, f,,,, and the integration constant,
Pma, are given by Egs. 76 and 79, 80, respectively. The
_ _ AW2 - — (Bsi K2 )2 matrix crack radius (see Fig. 12), r,; (see Eq. 63),
P =P {/ {\/ Weno = Bs1nKicy) represents a root of Eq.56, as a function of the
variable x; and the parameter R € (R, Rm1), and can
_ \/Cﬁ (ch+ch1l)2_(3511m K%Cm)z} dxl} , be derived from Eq. 5§, along with.the i.ntegral i.n
x1=R Eq. 62, for a concrete isotropic multi-particle-matrix
(61) system by a numerical method, where r,; =0 and

where the function, f,,,, and the integration constant,
B2, are given by Eqgs. 76 and 79, 80, respectively.

Matrix crack initiation and formation II Considering
such v when c¢9<0 (see Eq. 124), the critical particle
radii, R,,» and R,,,;, are a reason of the crack initiation
and consequently the crack formation in the matrix
from the position x; = R to the position x; <R, and a
reason of the matrix crack tip in the position x; =0
(see Fig. 12), respectively, where R;;; <R, for cg<0.

With regard to Eq. 48, the function, f,,;, describing
the matrix crack shape in the intervals x; € (0,7,;1)
and x; € (O,R) for R € (Ry2,Rm1) and R > R,y (see
Fig. 12), respectively, has the form

1
ot = SSllmK%Cm
x {ﬂml"’/\/Cg(WCP+Wcm1)2_(3san12Cm)2 dxi |,
(62)
representing an increasing function of x;, and

accordingly the sign + in Eq. 48 is considered. With
respect to the boundary conditions given by Egs. 58
and 59 related to the particle radius R € (R, Ru1)
and R, respectively, the integration constant, f3,,, is
derived for R € (R, Ryn1) as

— 2 2 2
Bt = 3511mKicm\) R =Ty

- I:/ \/Cﬁ(ch + Wcm1)2—(3S11mK%Cm)2 dX1 )

X1=Im1

(63)

Fml = Rm1 for R=R,;; and R = R,,;, respectively.

Matrix crack initiation and formation 111 Considering
such v when c¢9 = 0 (see Eq. 124), the critical particle
radii, R,;1, R,» and R,,;,», are a reason of the crack
initiation and consequently the crack formation in the
matrix simultaneously from the positions x; = 0, x; = R
to the positions x; >0, x; <R, respectively, and a reason
of the matrix crack tip in the position x; = R/2 (see
Fig. 13), respectively, where 7,1 = R, for ¢ = 0, and
Ry /25 R, represents aroot of Eq. 52 as a function of the
variable R on the condition x; = R/2 in the form

1 (cap;,>2
Rm1/2 4s11m \Kicm

A\ 13
x | V3(s11p +2512p) + €2 (S11m + 2512m) [<—H> —\/51

3v
5
c2 2(3v)1/3
+§6(511m _512m) 1- ( )
(4m)* +(3v)*/°

(65)

The matrix crack is described by the functions, f,,,11
and f,,12, decreasing and increasing in the inter-
vals x1 € (0,7,11), x1 €{0,r,1) and X1 € (Fm12, R),
x1 € {rm1, R) (see Fig. 13), respectively, related to the
disconnected, interconnected matrix cracks, as de-
pended on the parameter R. The matrix crack radii,
F'mi1, Fmi12, and the position in which the function,
fm1 = fm11 + fm12, describing the interconnected parti-
cle cracks exhibits a minimum, r,,;, represent roots of
Eq. 56, as a function of the variable x; and the
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parameter R, for R € (Rui,Rpu12) and R > Ry,
respectively, and can be derived from Eq. 56 for a
concrete isotropic multi-particle-matrix system by a
numerical method, where 1l = Fmiz = 0 and
Fm1l1 = I'mi2 = Rm1/2/2 for R= le and R = le/z,
respectively.

With regard to Eq. 48, the functions, f,,,11 and f,,12,
have the forms

X [ﬁmll—/\/cj(ch+Wcm1)2—(3S11mK%cm)2dxl]7
(66)

fm1zzm
[ [ Vet Wt W= 10K ]
(67)

representing increasing and decreasing function of xy,
and accordingly the sign — and + in Egs. 66 and 70 are
considered, respectively. The integrals can be derived
for a concrete isotropic multi-particle-matrix system
by a numerical method, and with respect to the
boundary conditions given by Egs. 68, 69 and 70, 74
in the forms

X1 =Tmit, fm1 =\/R* =12, (68)
X1 =Tmi2, fmz = \/R* =12y, (69)
X1 ="rm1s Sl = fmr2, (70)
X1 =" m1s  Jmt1 = fmi2, (71)

related to the particle radius R € (Ry1, Ry12) and
R > R,,1, respectively, the integration constants, f,,1;
and f,,12, are given by Eqgs. 45 and 54, replacing the
term r,,; by the terms r,,;; and r,,1,, respectively, for
R € (R, Rip12), and derived for R > R, as

ﬂllm
_ﬁm2+2 |:/\/ cp+Wcm1 (3S11m ICm) dxl:|

X1=Im1

{/\/ cp+Wcm1) —(3s1mK3c,,) dxl}

v

)C]ZR

3sllm ICm) dX,'1:| )
x1=R
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ﬁle

= b= [t Wep = Worn ) =G i) |

| [ Vetwe -

X1 =R

3sllml<[Cm) dx1:| ,
X]ZR

(73)

where the function, f,,», and the integration constant,
B, are given by Eqgs. 76, 79, 80, respectively.

Matrix crack initiation and formation IV~ With regard
to the function, f,,», describing the matrix crack shape in
the interval x; € (R,d/(2cos ¢)) (see Figs. 4, 12, 13),
the critical particle radius, R,,;, given by Eq. 55, is also
a reason of the crack initiation and consequently the
crack formation in the matrix from the position x; = R
to the position x;>R. Consequently, the critical
particle radius, R,,3, resulting from the condition for
the matrix crack tip on the cell surface in the position

=d/(2c0s @), (m2/0X1)y,_a/(2cos )= 0- related to an
ideal-brittle matrix [11, 16], corresponding to a
connection of the matrix cracks in neighbouring cells
between the points C; and Cj, (see Fig. 4), where
Ry < Ry3, represents a root of Eq. 53 as a function of
the variable R on the condition x; = d/(2cos ¢), and
regarding Eq. 3 is derived as an increasing function of
the angle ¢ in the form

L1 ()
Ry 20s11m \Kicm
4\ 13
X {5C§(S11m +2512m)<§)

2.5 3\
+32c; cos” (S11m — S12m) (-)

4r

)5/2] }

1
ll - (1+cos? ¢ )

The matrix crack radius (see Figs. 12, 13), r,.,
determining the matrix crack tip position, representing
a root of the equation

CZWcmZ - 351 lmKIZCm = 0’ (75)
as a function of the variable x; and the parameter
R € (Ry2, Rin3), resulting from the condition for the
particle crack tip in the position x; =rp, (fm2/
ox1),,_, . = 0 (see Eq. 49), can be derived from Eq. 75
for a concrete isotropic multi-particle-matrix system by
a numerical method.
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With regard to Eq. 49, the function, f,,,, describing
the matrix crack shape in the intervals x; € (R, r;2)
and x; € (R,d/(2cos¢)) for R € (Ryp,Ry3) and
R > R,;3 (see Figs. 12, 13), respectively, has the form

1

2
3s1mKicy,

|:ﬁm2 / \/C4 Wi —

fm2 =

(3s11mK3p,,)” dxi |
(76)
The integral can be derived for a concrete isotropic
multi-particle-matrix system by a numerical method,

and with respect to the boundary conditions given by
Eqgs. 77 and 78 in the forms

fm2 =0, (77)

d
2cos ¢

X1 = Tm2,

R = Rm3; X1 = s fmZ = 0, (78)

related to the particle radius R € (Ru», Ry3) and
R > R,3, respectively, the integration constant, f3,,,, is
derived for R € (Ry2, Ryn3) as

e [

and for R > R,z as

[/ \/C4W

— (3s11m Ic,n) dx1} , (79)

X1=Im2

Bz

3Sllm ICm) dxl} )
x1=d/(2¢cos ¢); R=Ry3

(80)

Surface integral of elastic energy density

The surface integral, Wy, and Wi, of w, and w,, (see
Egs. 21, 22) over the surfaces P,P3Ps | xx3 and
P1P,P,Ps || xox3 (Fig. 14), representing the elastic
energy gradient within the spherical particle and the
cubic cell matrix along the axis x; € (0, R) (Figs. 3, 14),
Wy, = 0W,/0x; and W1 = OW,,/0x,, respectively,
as the elastic energy ‘surface’ density, equivalent to
those along the axes x,, x3 due to the isotropy of the
multi-particle-matrix system, has the form

T[/2 Rz
W;p = / Wp dS,, = 4/ / Wph23 dr23 df
S, 0 0

P

3 2
= P8 (511, + 2512) (R? —

5 x1),1 € (0,R), (81)

P,

d
R\

P; P;l X1
|

1

Py |Ps

X
X3

Fig. 14 The planes P P,P3P4Ps H X2X3 and P¢P7Pg || X2X3 in the
positions x; € (0,R) and x; € (R, d/2), respectively, in the cubic
cell of the dimension d, containing the spherical particle of the
radius R (Fig. 3)

n/4 Ry
Wi = / WSy =8 / / S
S’n R

3p? 47\ ¥3
==b R? <3V) —n(R* —x})

3 {4C%(511m+2512m)
+ R (s11m _SIZm)(ﬂ_4cllR4)}a x1 € (0,R),

(82)

and then, for x; € (0,R), dS; = r23dry; d¢ is an infini-
tesimal partin the point P of the spherical particle (¢ = p)
or the cubic cell matrix (¢ = m) on the surfaces
Sy, = PoP31Py || x2x3 or S, = PriPoPnP3Pio || xox3
for ry; € (0, Ry) or ry3 € (Ry, Ry3) (Figs. 14, 15), respec-
tively, where P, P31 P3p, P11 P2P3 P33Py C PiPyP3PyPs

(Fig. 14); I3 = |P31P‘; P31P2X3; R = |0P2| = |0P32|;
X
’ P33
Py P3;
P Q
P 3
I r23§
(0] P3;
d2
P,
X
X3 Py

Fig. 15 The planes P2P31P32 H X2X3 and P11P2P32P33P23P12 ||
x,x3 of the spherical particle of the radius R and of the cubic cell
matrix of the dimension d (Fig. 3), included, along with the point
P, in the plane P;P,P3P4Ps || x,x3 in the position x; € (0, R)
(Fig. 14)
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Ry = |P31P;| = |P31 Px| = /R? — x3;

Ry3 = |P31Pys| = d/(2c0s&); P3P, P31 Py || x2x3; and
the coordinate r in Eq. 22 is derived as r = |OP| =
\/13; +x2. Due to the isotropy of the multi-particle-
matrix system, the angle ¢ is sufficient to be varied in the
interval ¢ € (0, 7/4).

The surface integral, W,,,, of w,, (see Eq.22)
over the surface PgP7Pg || xox3 (Fig. 14), represent-
ing the elastic energy gradient within the cubic
cell along the axis x; € (R,d/2) (Figs.3, 14),
Wom = OW,,/0x1, equivalent to those along the axes
X5, X3, has the form

7'[/4 R67
Wi = / W S, = 8 / / Wty drey dé
S, 0 0

m

3pIR? 4\

R\
+ Ca(S11m — S12m) (7 — dci1x]) <x1> }7

x| € <R,Z>, (83)

and then, for x; € (R,d/2), dS,, =redre7dE is an
infinitesimal part in the point P of the cubic cell matrix
on the surface S,,62P7,P73P¢; || x2x3 (Figs. 14, 16) for
re7 = |P71P| S <O, R67>, I’GSpGCtiVCly, where Pg P71P7;
Pe7Ps6P7Pg (Fig. 14); P71 P || x2x3; Re7 = |P71P67| =
d/(2cos&); P71 Pe7 || x2x3; and the coordinate r in
Eq. 22 is derived as r=|OP| = ./r2, +x3. Due to
the isotropy of the multi-particle-matrix system, the
angle ¢ is sufficient to be varied in the interval

¢ e (0,m/4).

X2

.U
dn

X]

X3 Pg

Fig. 16 The plane PgP7nP73PesPes || x2x3 of the cubic cell
matrix of the dimension d (Fig.3), included, along with the point
P, in the plane P¢P7Pg || x2x3 in the position x; € (R,d/2)
(Fig.14)
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Alternatively, the surface integral, Wy,,», of w,,, (see
Eq. 22) over the surface PgP;Ps || xox3 (Fig. 14), is
also derived as

¢ pm/2
Wemo = / W, dS,, = 4/ / Wl dedv
Sm 0 Ve

3pIR? 4\
= ’é 4ck 3 (S11m + 2812m)

R\4
+Cécl7(sllm — S12m) <>
X1

x| € <R,‘21>, (84)

and then, for x; € (R,d/2), dS,, = r* dp dv represents
an infinitesimal part in the point P of the cubic cell matrix
on the surface S,,62P7,P73P¢3 || x2x3 (Figs. 14, 17) for
r=|0P| =xi/(cos psinv), ¢ €(0,p5), vE (vs,7/2),
where Pg P P73Pg3 C PgP7Pg (Flg 14), and the angles
@73 = Z(OP7,OP73), v¢ = Z(x3, OPg) are presented in
the section Appendix (see Egs. 134, 135).

The x,-dependence of W, + W,,1 and Wy,,,» exhibits
concave and convex courses in the intervals x; € (0, R)
and x; € (R,d/2), respectively. As a reason of material
properties (e.g. coercivity, dislocation motion) [11], the
maximum, Wymax = (Wi, + Wsml)xlzo (see Egs. 81, 82),
has the form

)

3npiR?
2

3p2R? 47\
+ ]é 4ck(s11m + 2512m) 3y

+ Cé(sﬂm _Slzm)(TC—4C]1R4)}. (85)

Wimax = (Sllp + 2S12p)

X3

dn

D72

X1
X3 Pg;

Fig. 17 The plane Pg;P7,P73Ps3 || x2x3 of the cubic cell matrix
of the dimension d (Fig. 3), included, along with the point P, in
the plane PsP7Ps || x2x3 in the position x; € (R,d/2) (Fig. 14)
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Particle and matrix thermal-stress induced strengthening

Considering the planes P;P,P3;P4Ps and PcP7Pg to be
loaded by the stress, g, constant over the individual
plane in the positions x1(0,R) and x;(R,d/2),
respectively, the elastic energy density, wg,, induced
by the stress, g, acting along the axis x; in the particle
(¢ = p) and the cubic cell matrix (g = m), is derived as

[1]

2
£1190 S1140
Wo, = ; 1= 2 . . (86)

where ¢114 is the strain along the axis x;.

The elastic energy gradient within the spherical
particle and the cubic cell along the axis x; (Figs. 3, 14)
is qu = fS( W(;qu, where SP2P3P4, Sm = P1P2P4P5
and S, = PeP7Pg for x;(0,R) and x{(R,d/2),
respectively. The stresses, ¢, and o,,, derived from
the conditions, W, = W, and Wy, = W (i = 1,2)
(see Egs. 81-84), and accordingly inducing the same
influence as induced by the thermal stresses and thus
representing the thermal-stress induced strengthening
within the spherical particle and the cubic cell matrix,
as a resistance against compressive and tensile mechan-
ical loading for o, >a, and a,, <a,, respectively, have
the forms

2s
o =P 3(1 +ﬁp”) (87)
N (58)
N (89)

where Eqgs. 88 and 89 are functions of x; € (0,R)
(i=1) and x5 € (R,d/2) (i =2), respectively, and
(oml)xl:R: (sz)xlzR (see Egs. 82-84, 136, 137). The
signs + and — in Eqs. 88-90 are considered for w,, >«
and «, <o, respectively.

With regard to the x;-dependences, the parameters
Om1, Omp are considered to represent matrix micro-
strengthening in the intervals x1 € (O,R),
x1 € (R,d/2) [11], respectively, and consequently the
average value &, representing the thermal-stress
induced strengthening in the cubic cell matrix, is
defined, regarding Eq. 3, as [17]

2 R d/2
Em:g / Gmldx1+/ om2 dx
0 R
_ :t% (jv) 1/3 </R Wsml dxl +/d/2 Wstdxl>,
n 0 C18 R C19

(90)

where the integrals can be derived for a concrete
isotropic particle-matrix system by a numerical method.

Isotropic one-particle-matrix system

As presented in the section ‘Isotropic multi-particle-
matrix system’, concerning the v-dependences of
thermal-stress related parameters of the SiC-SizNy
multi-particle-matrix ~ system in the interval
v € (0,7n/6), formulae related to the isotropic one-
particle-matrix system represented by one spherical
particle with the radius R embedded in the infinite
matrix, as transformation of those related to the
isotropic multi-particle-matrix system for v =0, are
required to be derived.

Thermal stresses

Resulting from the analytical model presented in [15],
the radial and tangential stresses, acting in the spher-
ical particle (¢ = p) for r € (0,R) and in the infinite
matrix (¢ =m) for re€ (R, ), 6,4 and 6,4, 0y,
respectively, have the forms

Orp = Opp = Owp = Db 1)

R 3
Orm = _2O'q;m = —20yn = —Pb (7) 5 (92)

where ¢ >0 and ¢ <0 represent the tensile and
compressive stresses, respectively.

The compressive or tensile particle-matrix boundary
radial stress, p,>0 or pjp <0, respectively, is derived
as [15]

1 5

P = —
cioJr

(otm — o) AT, (93)
and Egs. 11-14 are transformed for v = 0 to Egs. 91-93
for (pc),_o=0. Considering «, to be temperature-
independent, the integral fTT ogdT is replaced by
OCq(T[ — T)
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Temperature range of cooling process

With regard to the section ‘Temperature range of
cooling process’, the presented derivations are consid-
ered in the temperature range 7T € (T, T;), and the
critical final temperature of a cooling process, 7., can
be derived from

1 %
—/T (ot — 1) dT’ — 0y, =0, (94)

€10

for a concrete isotropic multi-particle-matrix system by
a numerical method, and considering o, (¢ = p,m) to
be temperature-independent, 7, has the form

€10

T.=Ti —0y,y|—|
1 (ot — 1)

(95)

Elastic energy density

With regard to Eq. 20, and consequently to ¢;; =0
(i#7j) and the subscript transformations, 11 — r,
22 — ¢, 33 — v, the elastic energy density of the
thermal stresses in the infinite matrix, w,,, is derived as

2 6
Win = 37% (S11m — S12m) (R) . (96)
’

The elastic energy density of the thermal stresses in
the spherical particle, w,,, is given by Eq. 21, consid-
ering the particle-matrix boundary radial stress, pj,
derived by Egs. 93, 125.

Curve integral of elastic energy density

The curve integrals within the spherical cell of the
radius R, — oo, W,,1 and W,,,, as integrals of w,,
(see Eq. 96) along the abscissae P4Ps and P;Pg in the
plane x1x3 in the positions x1 € (0,R) and
x1 € (R,R;) (see Fig. 18), respectively, as the elastic
energy ‘curve’ density, equivalent to those along the
abscissae in the planes xjx;, x;x3 due to the isotropy
of the multi-particle-matrix system, are derived as

Wcml :/ W dX3
PyPs

3Rp? R\’
= Pb (Sllm - S12m) [1 - (_>

20

oo 3RP?
= ng (S11m — S12m)5 (97)
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X3

0>

Rc \ PS
N,

0=x, X

R Ps P,
P

| ; /

6
| _— P,

X1

Fig. 18 The abscissae Py P,P3P4Ps and PgP;Pg in the positions
x1 € (0,R) and x; € (R, R,), respectively, in the spherical cell of
the radius R, — oo, containing the spherical particle of the
radius R. With regard to surface integrals of w,, w,, and w,,
energy density (see section ‘Surface integral of elastic energy
density’), P1P,P3P4Ps || xox3 and PgP7Pg || x,x3 represents
planes, respectively

Wcm2 = / Wmn dX3

3Rp? R\’
= ng (sllm _sl2m) (x_l) 1

_3Rp} R\’
RC: 25}’ (S11m — Slzm) <;) . (98)

With regard to the term 7 in Eq. 96, and due to the
isotropy of the one-particle-matrix system, the elastic
energy accumulated in the cubic cell matrix between
the points P, and P, and between the points P, and Ps,
is equal to that accumulated between the points at radii
r=1|0P;] =R and r=|0OP;3| =R, and at the radii
r=|OPsy) =x; and r=|OPs| =R, for x; € (0,R)
and x; € (R, R.), respectively. Accordingly, the term
r~0dx; (see Egs. 96, 97, 98) is replaced by r° dr, where
r € (R,|OPs3|) and r € (x1,|OP4]) for x; € (0,R) and
x1 € (R,R.), respectively.

The curve integral within the spherical particle,
p» as an integral of w, along the abscissae P3P, in
the plane xjx3 in the position x; € (0,R) (see
Fig. 18), is given by Eq. 23, considering the particle-
matrix boundary radial stress, p;, derived by Eqgs. 93,
125.

w

Particle and matrix crack initiation and formation

With regard to Egs. 23, 97, W, + Wem and We,n
represent decreasing function of x;, depending on the
parameter R, and consequently the particle crack
exhibits a shape as shown in Figs. 8, 11.
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Particle crack initiation and formation The critical
particle radii, R,y and R,,, where R,y>R,, as a
reason of the crack initiation and consequently the
crack formation in the particle from the particle centre,
O, in the position x; = 0, to the particle surface (see
Fig. 8), and as a reason of the particle crack tip on the
particle surface in the position x; = R, represent roots
of Eqgs. 28 and 29, respectively, in the forms

20, Kicp\*
Ryt = it (). o
10(s11p + 2812p) + S11m — S12m \ Pb
20 Kicp\ 2
Rp =2 (Bi) (100)
S11m — S12m \ Pb

The particle crack radius (see Fig. 8), r,, determin-
ing the particle crack tip position, representing a root
of Eq. 32, as a function of the variable x; and the
parameter R € (Rp1,Ry2), is derived as

Tp

2
1 Ki\® R
=\| R [ZSup (ﬂ) —E(st—Sum)] ’
(s11p+2s12p) Po

(101)

and the function, f,, describing the particle crack shape
in the intervals x; € (0,r,) and x; € (O,R) for
R € (Ry1,Ryn) and R > Ry, (see Fig. 8), is given by
Eqgs. 33, 36 and 37, respectively.

Matrix crack initiation and formation The critical
particle radii, R,,; and R,,, as a reason of the crack
initiation and consequently the crack formation in the
matrix from the position x; =0 to the position
x1 = R, and as a reason of the matrix crack tip in the
position x; = R to the position x;>R (see Fig. 21),
represent roots of Eqs. 52 and 53, respectively, in the
forms

20, Kicm\*
le _ S11m ( ICm) 7 (102)
S1im — S12m \ CaPb
20, K
RmZ _ S11m ( ICm) ] (103)
10(s11p + 2512p) + S11m — S12m \ CaPb

The matrix crack radii (see Fig.11), r,; € (0,R) and
rm2 > R, both for R> R,,, representing roots of Egs. 56
and 75, as functions of the variable x; and the
parameter R, for R € (Ry1,Ry,2) and R > R,p,
respectively, are derived as

1219
Fm1
1 Kion\2 R ?
=\|R————— 2511m< Icm) —1g S1im—S12m)
(s11p+2512p) CaPb 0
(104)
211/5
Stim — S12m [ CaPp R
= 105
2 l 20811m <K1Cm> ’ (105)

and the matrix crack (see Fig. 21) is thus described by
Egs. 57, 60, 61 and 76, 79 for x; € (0,r,1) and x; €
(R, ), related to R > R,1 and Ry, respectively.
Surface integral of elastic energy density
The surface integral, W,,, of w, (see Eq. 21) over the
surface P,P3P4 || xox3 (Fig. 18) is given by Eq. 81,
considering the particle-matrix boundary radial stress,
D», derived by Eq. 93. Determining the surface integral
of the elastic energy density, the spherical particle is
considered to be embedded in the spherical cell of the
radius R, (Fig. 18), and derived formulae then repre-
sent transformations of the integrals for R, — oo.
The surface integral, W1, of w,, (see Egs. 93, 96)
over the surface P;P,P4Ps || xox3 (Fig. 18), represent-
ing the elastic energy gradient within the spherical cell
matrix of the radius R, — oo along the axis
x1 € (0,R), Wg,1 =0W,,/0x1, as the elastic energy
‘surface’ density, equivalent to that along the axes x;,
x3 due to the isotropy of the one-particle-matrix
system, has the form

7[/2 R1
Wy = / W S, — 4 / / Witz dras de
S 0 R

3np2R? R\*
= pgb (S1im — S12m) [1 - (E)

2 p2
R,—o0 37 R
= b8 (Sllm - lem)a

x1 € (0,R), (106)

and then, for x; € (0,R), dS;,=r3dr3dé is an
infinitesimal part in the point P of the spherical
particle (¢ =p) or the spherical cell matrix
(g =m) on the surfaces S, = P,P31P3 || x2x3 or
Sm = P1PyP3P33 || xox3,  P2P31P3p, P1P2P3 P33 C Py
P, P3P4Ps (Fig. 18), for ryj € <0,R2> or r3 € <R2,R1>
(Fig. 19), respectively, where r;3 =|P51P|, P3P
X2X3, R=|OP2|:‘OP32|, Rc=|0P1|= |0P33‘

(Fig. 15), Ri =|P3Pi| = |P3Ps| = \/R2 —x}, Ry =

|P31Py| = [P35 P3| = \/R2 —xi, P3P, P3Py || xx3
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T 3 :
O IR Py,
P,
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X3 Py

Fig. 19 The planes P2P31P32 ” X2X3 and P1P2P32P33P23 || X2X3
of the spherical particle of the radius R and of the spherical cell
matrix of the radius R, — oo, included, along with the point P, in
the plane  PiP,P3P4Ps || xpx3 in the position x; € (0,R)
(Fig. 18)

and the coordinate r in Eq. 96 is derived as
r=|OP|=/r3 +x3. Due to the isotropy of the
particle-matrix system, the angle ¢ is sufficient to be
varied in the interval ¢ € (0,7/2).

The surface integral, W,,», of w,, (see Egs. 93, 96)
over the surface PgP7Ps || xpx3 (Fig. 18), representing
the elastic energy gradient within the spherical cell of
the radius R, — oo along the axis x; € (R,R.)
(Fig. 18), Wyp = 0OW,,/0x1, equivalent to those along
the axes x,, x3, has the form

7/2  rRes
Wsm2 = / Wsm dSm = 4/ / WmT68 dr68 dé
sm 0 0
3R2p? R\* R\*
3 (S1im — S12m) (x_1> 1- (R_c)

R—o0 3TP2R2 R\*

= pé’ (S11m _S12m><x_1> ,
x1 € (R,R;), R.— o0,

(107)

and then, for x; € (R,R.), dS,, =resdresdé is an
infinitesimal part in the point P of the spherical
cell matrix on the surface  S,,62P7,P73Pe3 || x2x3
(Fig. 20) for res = |P72P| € (0, Res), respectively, where
Pex P12 P73Pe3 C PoP7Ps (Fig. 18); PnP || xax3; Res =
|P72Pes| = \/ RZ — x%; P7,Pgs || x2x3; and the coordinate
rin Eq. 96 is derived as r = |OP| = /r’ + x2. Due to
the isotropy of the particle-matrix system, the angle £ is
sufficient to be varied in the interval ¢ € (0,7/2).

Consequently, the maximum, Wemax = (Wsp+
Wsml)xlzo’ derived from Egs. 81, 106 for x; =0, has
the form

@ Springer

X2 P,

X

X1

X3 Pg

Fig. 20 The plane P¢P7, P73 || x2x3 of the spherical cell matrix of
the radius R, — oo, included, along with the point P, in the
plane PsP7Ps || xox3 in the position x; € (R, R.) (Fig. 18)

3R’np?

Wsmax = 8

[4 (Sllp + 2S12p) + S11m — Slzm} . (108)

Particle and matrix thermal-stress induced strengthening

The elastic energy gradients within the spherical cell
matrix along the axis x;, Wi, and W, ., equivalent
to those along the axes x,, x5 due to the isotropy of the
one-particle-matrix system, induced by the stresses,
om and o,,, constant on the plane perpendicular to
the axis x;, representing integrals of w,, over the
surfaces P,P3P, and P1P,P,Ps for x;(0,R) and
x1{R, R.), respectively, have the forms

”saml :/ Wom dSp,
Sm
2

:“";" (R = R?), xi(0,R), R.— o0, (109)

Ww,,,z = / Wem dSm

Sm

2
:“’;" (R2—23), x1(R,R.), R.— oo. (110)

With regard to R, — oo, the thermal-stress induced
strengthening in the infinite matrix of the isotropic
one-particle-matrix system, o,,; (i = 1,2), derived from
the condition, Wy, . = Wy, is derived as
omi =0, (111)

and the thermal-stress induced strengthening in the
spherical particle of the isotropic one-particle-matrix



J Mater Sci (2007) 42:1202-1227

1221

system, o), is given by Eq. 87, considering the particle-
matrix boundary radial stress, p,, derived by Eq. 93.

Application to SiC-SizN4 multi-particle-matrix system

Compared to high strength and wear resistance,
ceramic materials are characterized by low fracture
toughness, usually strengthened by presence of parti-
cles of higher thermal expansion coefficient than that
of a matrix. Increasing fracture toughness of the SizNy
matrix by presence of the SiC particles of higher
thermal expansion coefficient than that of the SizNy
matrix, o, >0, (Table 1), the SiC particle and the
Si3N, matrix are thus acted by the tensile thermal
stresses, o,, = 0 = o, = —pp >0 (see Egs. 11, 14) (see
Fig. 21), and by tensile and compressive radial and
tangential thermal stresses, ¢,, >0 and c4n = oun <0
(see Eqgs. 12-14) (see Fig. 22), respectively.
Representing a resistance against tensile mechanical
loading, the tensile radial thermal stress o, >0 in the
SisN, cubic cell matrix, as a reason of the SizN,
fracture toughness increase, and the compressive

1-4: T = 20, 400, 800, 1200°C
T; =1500°C

0.6

-p, [GPa]

0.4

0.2

0.0 1 . —
00 01 02 03 04 05

Fig. 21 The tensile radial and tangential thermal stresses in the
SiC spherical particle, o¢,,>0 and ¢ = 0,,>0, respectively,
equal to the particle-matrix boundary radial stress, —-p, (see
Egs. 4, 7), and the critical final temperature of a cooling process,
T., as functions of the particle volume fraction, v € (0,7/6),
where T; and T is the initial and final temperature of a cooling
process, respectively. The p, —v dependence exhibits an
extreme for the critical particle volume fraction v, = 0.132

tangential radial stresses o4, = 0y, <0, both decrease
within the cubic cell matrix (see Fig. 22), the former
from the maximal value on the particle-matrix bound-
ary, (Omm),_gr= —Pb, Where the particle-matrix bound-
ary radial stress, —p,, as a function of the particle
volume fraction, v € (0,7/6), exhibits the maximum
for the critical particle volume fraction, v, = 0.132 (see
Fig. 21). Similarly, the tensile thermal stresses
O = Ogp = 0yp = —pp >0 in the SiC particle repre-
sents a resistance against compressive mechanical
loading. Resulting from experimental results [11, 16],
the SiC-SizN, multi-particle-matrix system exhibits a
maximal fracture toughness for the SiC particle volume
fraction, v ~0.15 [11, 16], corresponding to the
calculated value, v, = 0.132.

With regard to the yield stress in tension of the SiC
particle, oy, = 1000 MPa, and to the initial tempera-
ture of a cooling process, 7;=1500C [11, 16], the
v-dependence of the critical final temperature of a
cooling process, 7. (see Eq.16), exhibits values
<-273.15°C in the interval v € (0,7/6), and the
presented derivations are thus considered in the
temperature range 1 € (—273.15,1500) C.

With regard to the material constants listed in
Table 1 [11, 16], the dependences in Figs. 21, 22 and
the following ones are generated on the condition of
the linear 7-dependence of the thermal expansion
coefficient of the particle (¢ = p) and the matrix
(g = m), o, derived the form

- Ocqz(T — T1) — ocql(T — Tz)
1 T, — T ’

(112)

where o, and o, are related to the temperature
T, =20C and T, =1100C, respectively, for the
particle  volume fraction equal to critical,
v=v,=0.132 (see Fig. 21), for the average SiC
particle radius, R =250 nm, consequently for the
inter-particle distance, d = 794 nm, for the initial and
different temperature of a cooling process,
T; =1500C and T = 20,400, 800,1200 C, respectively,
and regarding the interval v € (0,7/6), the formulae
presented in the section ‘Isotropic one-particle-matrix

Table 1 The material constants of the SiC particle and the Si;N, matrix [11, 16, 18]

E (GPa) M o (10 K™) ,; (GPa) ayc (GPa) K;c (MPa m'?) R (nm)
SiC 360 0.19 4.14/5.05 5 3.25 10-500
SisNg 310 0.235 2.35/3.75 5 5.25 -

the Young’s modulus, E; the Poisson’s number, yu; the thermal expansion coefficient, o; the yield stress in tension and compression, o
and g, respectively; the fracture toughness, Kj¢; the SiC particle radius and volume fraction, R and v, respectively

220 °C/1,100 °C
®y=0.05-03
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(a) 0.8 T
] 1-4: T = 20, 400, 800, 1200°C
] T, = 1500°C
0.6 v=0.132
1 R =250 nm
;‘«5 1 d =794 nm
© 04
E 4
©
0.2
0.0 : 1 e ,

250 275 300 325 350 375
X [nm]

400

Fig. 22 The tensile radial (a) and compressive tangential (b)
thermal stresses in the SizN, cubic cell matrix, ,,>0 and
Gom = 0yn <0 (see Eqgs. 5-7), respectively, as functions of the
position r=ux; € (R,d/2) (see Figs.3-5), for the particle

system’ are considered for v = 0. Furthermore, the
v-dependences of the investigated parameters also
result from the fact that a real multi-particle-matrix
system is characterized by different local v, as a
consequence of aperiodically distributed particles of
different dimensions.

Resulting from the tensile thermal stresses in the
SiC particle and consequently with regard to the
particle crack formation, the SiC particle radius can
be varied within the intervals, R € (0,R,) and
R e (0,Ry), for ve(0,vg) and v € (vy,m/6) (see
Fig.23a), where R, and R,, (see Eqgs. 30, 31) are
reasons of the particle crack formation from the
particle centre, O, to the particle surface, and vice
versa (see Figs. 8, 9), respectively, and vy = 0.487. In
addition, Fig. 23b shows the T7-dependence of
R, = (Rpl)v:voz (sz)V:VO for v =y, as a reason of
the particle crack formation simultaneously from the

() 1-4: T = 20, 400, 800, 1200°C
T;= 1500°C 4

1000 -

Rp [mm]

100 A

Fig. 23 The critical SiC particle radii, R,; and R, (a) (see
Egs. 23, 24), as functions of the particle volume fraction,
v e (0,v) and v € (vy,n/6), respectively, and the critical SiC
particle radius, Ry = (Rp1) (sz)V:VO (b), as a function of

v=vy
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1-4: T = 20, 400, 800, 1200°C

T. = 1500°C
© 1
03 v=0.132
R =250 nm
J d =794 nm
‘0.4 T T L T T T
250 275 300 325 350 375 400
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volume fraction equal to critical, v =v. = 0.132 (see Fig. 21),
where T; and T is the initial and final temperature of a cooling
process, respectively; R is the particle radius; and d is the inter-
particle distance

particle centre, O, and the particle surface (see
Fig. 10).

Although, the critical particle radii, R,i, R, are
extremely high compared to the SiC particle radius of
the interval, R € (10,500)nm, as an illustration,
Fig. 24 shows the function, f,, (see Eq. 33), describing
the particle crack shape in the interval x; € (0,r,), in
the form

fr =3.993 x 1075 — 1.568x; + 3.694 x 10"x}
+6.684 x 105x7 4 8.947 x 10%2x] + 1.21 x 10°%x)
+1.067 x 10%x{" ... (113)

and accordingly the contribution of the term xf for
n > 3 is neglecting, where r, =25.94um is derived
from Eq. 32 by a numerical method for v = v, = 0.132,

R, =49.7um, R =55um. The quasi-linear shape
1E+3 3
(b) 73 T;= 1500°C
]E+2_E
E ]
‘E‘ 1E+I =
(=} 3
o
o
1E+0 5
1E-1 —r : —
0 500 1000 1500
T [°C]

the final temperature of a cooling process, T € (20,1500) C for
vo = 0.487, where T; is the initial temperature of a cooling
process
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60 - (Fig. 25), and the maximum for x; =0, Wl (see
] Matrix Tiz ;3802 Egs. 85, 108), as a function of the spherical particle
50 ] v=0132 volume fraction v € (0,7/6), exhibiting the maximum
R l:;gﬁ$ for v = 0.096 (Fig. 25d), represent a copybook shape of
407 pl- 25:9}““ an energy barrier (Fig.25c) [11] and its height,
T respectively, influencing magnetic domain and disloca-
330_: Particle tion structure [11]. The elastic energy gradient, Wi,
] derived in the interval x;(R,d/2) by Egs. 83 and 84
20 ] Particle crack: f exhibits identical courses. With regard to Wipax o< R?,
] P the v-dependence of Wy is related to the spherical
10 . .

] particle radius R = 1.
o ] The elastic energy gradients, W,,,,; and W, corre-
o 10 20 30 40 50 6 spond to thermal-stress induced strengthening within

Xl[}lm]

Fig. 24 The function, f,,, describing the SiC particle crack in the
interval x; € (0,r,) (see Egs. 25, 26, 29) for the particle volume
fraction equal to critical, v =v. =0.132 (see Fig. 21), and for
the SiC particle radius, R>(R,1),_, (see Fig. 23), where T; and
T is the initial and final temperature of a cooling process,
respectively

corresponds to that from experimental results [4, 5, 11,
16].

If a magnetic domain wall or a dislocation move
from the cubic cell surface to the particle-matrix
boundary, the elastic energy gradient within the SiC—
SisN, cubic cell, Ws =W+ Wont + Wen  (see
Egs. 81-84), as an increasing function of x;(0,d/2)

the Si3N, cubic cell matrix, o,,,; and 7,5, in the intervals
x1 € (0,R) and x; € (R, d/2) (see Egs. 87-89) (Fig. 26),
respectively. The thermal-stress induced strengthening
in the SiC spherical particle, o, (see Eq. 87), and the
average thermal-stress induced strengthening in the
Si3Ny cubic cell matrix, @,, (see Eq. 90), as functions of
the spherical particle volume fraction, v € (0,7/6), are
presented in Fig. 27, where |0, | exhibits the maximum
for v=v,=0.132, and G, is independent on the
parameter R, as resulted from the integration in Eq. 90)
by a numerical method. With regard to o, <a,, the
parameters, o,,1, 0,2 and G,, represent micro- and
macro-strengthening against tensile mechanical load-
ing, respectively. The &, —v dependence for the
SiC-SizN, multi-particle-matrix system is in a good

Fig. 25 The elastic energy (a) 3007 (b) 2001
gradient of the thermal ] ! 1-4: T =20, 400, §I~OOL 1125%%% 1-4:T =20, 400, -i{og ll 528805
stresses in the SiC spherical 250 1 i 0132 ] - 0132
. . . bl v=0. 150 - v=0.
palrltlcle e}nd the SizNy cubic = 2001 R = 250 nm - 11 R =250 nm
cell matrix, Wy, (a) and Wy, g ] d=794nm E ] d=79nm
! —_ ] =y 4
Wwfz. (b), as functions of the T s 0l 2 1004
position x; € (0,R) and = ] = ]
x1 € (O,R), x1 € (R,d/2) 3% 100 ] ;ﬁ 2
(Fig. 3), respectively, along ] 50
with the elastic energy 50 1 3 13
gradient of the thermal 14 jT———\
stresses in the SiC-SizNy ot e o———
cubic cell, 0 50 100 150 200 250 0 100 200 300 400
WY = va + val + WrmZ (C) Xl[ﬂm] xl[nm]
The maximum of the elastic 500 d) 8
i C ]
energy gradient Qf the . (© 1 1-4: T = 20, 400, 800, 1200°C (d) ] 1-4: T = 20, 400, 800, 1200°C
thermal stresses in the SiC— 11 T, = 1500°C 11 T; = 1500°C
Si3Ny cubic cell, Wypax/R?, as 400 v=0.132 = 6]
a function of the spherical — ] R =250 nm ‘e
. . ' b =
particle volume fraction, E 300 d=794nm S
v e (0,7/6) (d) % 1, v 4
=, 200 o
2 g
] 24
1004 3 R
14 la =
0 L S S B B S B S S T T 0 T T T T T T
0 100 200 300 400 0.0 0.1 0.2 0.3 0.4 0.5

Xy [nm]
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Fig. 26 The thermal-stress micro-strengthening in the SizN4
cubic cell matrix, ,,; and a,;, as functions of the position
x1 € (0,R) and x; € (R,d/2) (Fig. 3), respectively

agreement with experimental results adverting to the
tensile strength increase in the range AR, = 0.3-
0.35 GPa for v~ 0.15and T =20C [11, 16].

Conclusions

The paper is the continuation of derivations published
in [13, 15], presenting the thermal stresses in the
isotropic multi- and one-particle-matrix systems,
respectively, originating during a cooling process as a
consequence of the difference of thermal expansion
coefficients between the particle and the matrix. The
isotropic multi- and one-particle-matrix systems are
represented by the periodically distributed spherical
particles embedded in the infinite matrix imaginarily
divided into cubic cells, containing one central particle
[13], and by one spherical particle embedded in the
infinite matrix [15], respectively.

Contributed to the results published in [13, 15] (see
subsections ‘Thermal stresses’), results of the pre-
sented derivations related to isotropic multi- and one-
particle-matrix systems are as follows:

— The initial and critical final temperature of a cooling
process between which the isotropic multi-particle-
matrix systems are acted by elastic thermal stresses
are derived (see subsections ‘Temperature range of
cooling process’).

— The thermal-stress induced elastic energy density in
a point, and along a curve in the spherical particle, in
the cubic cell matrix and in the infinite matrix of the
isotropic multi-particle-matrix systems are derived
(see subsections ‘Elastic energy density’, ‘Curve
integral of elastic energy density’).

— Resulting from the ‘curve’ elastic energy density, the
subsections ‘Particle and matrix crack initiation and

@ Springer

formation’, devoted to the particle crack formation
include

e the condition concerning a direction of the crack
formation in the spherical particle of the isotropic
multi-particle-matrix systems is derived,

e the critical particle radii, as a reason of the crack
formation in the spherical particle of the isotropic
multi-particle-matrix system are derived,

e the functions describing cracks in the spherical
particle of the isotropic multi-particle-matrix
systems are derived.

— The thermal-stress induced elastic energy density on
a surface in the spherical particle, in the cubic cell
matrix and in the infinite matrix of the isotropic
particle-matrix systems are derived (see subsections
‘Surface integral of elastic energy density’).

— Resulting from the ‘surface’ elastic energy density,
the thermal-stress induced strengthening in the
spherical particle, in the cubic cell matrix and in
the infinite matrix of the isotropic particle-matrix
systems are derived (see subsections ‘Particle and
matrix thermal-stress induced strengthening’).

Applying the derived formulae to the SiC-SizNy
multi-and one multi-particle-matrix systems, the main
results included in the section ‘Application to SiC-—
SizN,4 multi-particle-matrix system’ are as follows:

— The SiC spherical particle thermal stresses, the
particle-matrix boundary radial stress and the critical
final temperature of a cooling process, as functions
of the particle volume fraction, v, are presented (see
Fig. 21).

— The critical SiC particle volume fraction, v, = 0.132
(see Fig. 21), corresponding to maximal calculated
thermal stresses, is in an excellent agreement with the
SiC particle volume fraction, v =~ 0.15, correspond-
ing to a maximal fracture toughness as obtained from
published experimental results [11, 16].

— The thermal stresses, as functions of the position in
the SisN, cubic cell matrix, are presented for the
v=v.=0.132 and for the average SiC particle
radius, R = 250 nm (see Fig. 22).

— The critical SiC particle radii, as reasons of the SiC
particle crack formation and as functions of v, are
presented along with the temperature dependence of
the SiC critical particle radius (see Fig. 23).

— The function describing the particle crack for the
critical particle volume fraction and for the SiC
particle radius greater than critical is presented (see
Fig. 24).

— The thermal-stress induced elastic energy gradient,
as a function of the position in the SiC-SizN, cubic
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Fig. 27 The thermal-stress induced macro-strengthening in the SiC spherical particle, o, and the average thermal-stress induced
strengthening in the Si;N, cubic cell matrix, @,,, as functions of the spherical particle volume fraction, v € (0,7/6)

cell, is presented (Fig.25a, b, c) along with the
v-dependence of the gradient maximum (Fig. 25d).

— The thermal-stress induced strengthening, as a func-
tion of the position in the SizN4 cubic cell matrix, is
presented (Fig. 26) along with the v-dependences of
the thermal-stress induced strengthening in the SiC
spherical particle and the average thermal-stress
induced strengthening in the SizN,4 cubic cell matrix
(Fig. 27), being in a good agreement with published
experimental results [11, 16].
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Appendix

The elastic moduli of the particle (¢ = p) and the
matrix (g = m), s,, have the forms

1
S11g = Fq’ (114)
U
leq = —E—q7 (115)

q

where E, and yu, are the Young’s modulus and Pois-
son’s number, respectively.
The coefficient c is derived as

_ 3n(s11m + S12m)

= 26w (116)
¢ =1+ S11p + 2512p — (S1im + 2812m), (117)
[ e ]
0 |v1+cos2e 3\\/1+cos2o
(118)

where the coefficient c; can be derived by the Taylor
series for the integrated function. Consequently, after
integration of the Taylor series in terms of (¢ — ¢,)"
about the point ¢, = 0, the coefficient c3 = 0.337497
for n = 100;

2
c
s =2v(s11p + 2s12p) <£>

1 6vcy 2
— 2721 - m+25100m) 1 ———
+ (TE - 6V)2 [ T ( V)(sll —+ 28512 )( TCC2>

2
+v(S11m — S12m) (nz _ 36VC3) (1 _ C_1> ] 7

(&)
(119)
2¢1 (s11p + 2512p)
Cs :T
1 6vcy
i (m — 6v)> [ il = V)t + 2512 )< ”C2>
+($11m — S12m) (1° — 36vC3) (1 B E_]ﬂ 7
2
(120)
_ wfeacy +ves(er — )] (121)

° 7 (m—6v)(cacs +vercs)’
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CyC4 + VC1Cs

c7 = 122
7 C%C4 ( )
. — v[reacs — 6(cacs + veics)] (123)
s (m — 6v)(caca + veics)
Ccg = {SVZ(Snm + 2S12m)[C5 (6VC1 — HCQ) + 6C2C4]2
— (S11p + 2S12p) (TC — 6V)2(6‘2C4 + VC1C5)2}
+ 1672 (S11m — S12m) [Ves(c1 — €2) + caca)
5
5/3 1/3
TENTEC
T (4m)*P+4(3v)*
(124)
1
clo0 = Si1p + 28510p + 5 (St1m — S12m)s (125)
3n+8 (3v\*?
C11 = RV <47r> , x1=0, (126)
. /”/4 4(3v)*Pcos? ¢
11 = )
0 |R2(4m)*+4x,(3v) cos? & (127)

d
X1 € <0,5>7

where the coefficient c¢y; for x; € (0,d/2) can be
derived for a concrete isotropic particle-matrix system
by the Taylor series for the integrated function in terms
of (&— &))" about the point & = 0;

2% R(1270) '/ [3R2(4n)2/3+20x%(3v)2/3]

€12 =307 + 2/3 2/31? ’
R (4m) 423 (3v)"
(128)
P73
c13 = / ve cos* @ do, (129)
0
. /“’22 R4 (4m)*3cos® do
14 = 5
0 {R2(47r)2/3cos2 ¢+ 4x%(3v)2/3}
B R(4m)'/ {R2(4n)2/3+3x§(3v)2/3
VR @ raa Pl (R (4n) 42 (3v)

221\ (3v\ 7P R2(4m)* 4352 (3v)?°
- (7> (E) R2(4n)* +4x2 (3v)*
1 /R\? (4n\?>
() ) H

x In (130)
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7 /“’73 R2(4n)2/30055(p d
0 R2(4n ¢

e )*3cos? ¢ + 4x2(3v)*?
B 3v)'3 {R2(4n)2/3—4x§(3v)2/3
- \/R2(47t)2/3—|—4x%(3v)2/3 R(127)'"?
47 R3
3(3)1/° [Rz (4n)2/3+4x§(3v)2/3}

1 /R\?/4m\?*/?
1+-(2) (28
Jr2 (xl) (3v> ’
. /‘/’73 (4n)*R* cos’ ¢
16 = 5
0 {R2(47z)2/3cos2 ¢+ 4x%(3v)2/3}

6vxt

+ Hﬁlln (131)

de

B 1 {R2(4n)2/3—8x§(3v)1/3
1/3
\/R2(4n)2/3+4x%(3v)2/3 R(4m)"

+ 3R (4n)**—16x? (3v)" 4R (4m) '
{R2 (4n)2/3+2x%(3v)2/3]

B 4nR3
3| R2(4m) 43 (3v)" |

2R5 (4n)° [R4(4n)4/3—6x‘1‘(3v)4/3]

+ 2
R4 4t (3v)"

O

17 = R \ar 14 R A 15 16

37‘[012
= (133)

(132)

- 36137
where the coefficient c¢;3 can be derived for a concrete
isotropic particle-matrix system by the Taylor series for

the integrated function in terms of (@ — ¢,)" about the
point ¢, = 0;

R (4n\'/
P73 = arctan 2—-)61 (5) y

2x1 3\ /3
Rcos ¢ \4n ’

(134)

V¢ = arctan

(135)
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C18 :T R @ 77'C(R 7x1) , X1 € <O,R>,
(136)
siumR2 (4n 2/3
cro = 1 . (§> . (137)
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