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Abstract The paper deals with elastic thermal stres-

ses in an isotropic multi-particle-matrix system con-

sisted of periodically distributed spherical particles in

an infinite matrix, imaginarily divided into cubic cells

containing a central spherical particle. Originating

during a cooling process as a consequence of the

difference in thermal expansion coefficients between

the matrix and the particle, and investigated within the

cubic cell, the thermal stresses, as functions of the

particle volume fraction v, being transformed for v = 0

to those of an isotropic one-particle-matrix system, are

maximal at the critical particle volume fraction, repre-

senting a considerable value related to maximal

resistance of the thermal-stress strengthened multi-

particle-matrix system against mechanical loading. The

thermal stresses are derived for such temperature

range within which the multi-particle-matrix system

exhibits elastic deformations, considering the yield

stress and the particle-matrix boundary adhesion

strength. With regard to a curve integral of the

thermal-stress induced elastic energy density, critical

particle radii related to crack initiation in ideal-brittle

particle and matrix, functions describing crack shapes

in a plane perpendicular to the direction of crack

formation in the particle and in the matrix, and

consequently dimensions of a crack in the particle

and in the matrix are derived along with the condition

concerning the direction of the crack formation.

Additionally, derived by two equivalent mathematical

techniques, the elastic energy gradient within the cubic

cell, representing a surface integral of the thermal-

stress induced elastic energy density, is presented to

derive the thermal-stress induced strengthening in the

spherical particle and in the cubic cell matrix. The

former parameters for v = 0 are derived using the

model of a spherical cell with the radius Rc !1.

Derived formulae are applied to the SiC–Si3N4 multi-

particle-matrix system, and calculated values of inves-

tigated parameters are in a good agreement with those

from published experimental results.

Introduction

Investigated usually by approximate computational

and experimental methods [1], thermal stresses repre-

sent an important phenomenon observed in materials.

With regard to material science, thermal stresses

originate in a composite material as a consequence of

the difference in thermal expansion coefficients

between individual material components, consequently

influencing mechanical properties [2, 3], superconduc-

tivity [4, 5], diffusion processes [6, 7] and consequently

grain growth [8–10].

On one hand, representing resistance against

mechanical loading, regarding a multi-particle-matrix

system, thermal stresses depend on the particle volume

fraction v of a strengthening phase (a precipitate) of

the composite material, and accordingly are maximal

at the critical particle volume fraction, representing a

considerable value related to maximal resistance of

the thermal-stress strengthened multi-particle-matrix
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system [2, 3]. On the other hand, as a consequence of

the particle radius R greater than critical, the thermal-

stress induced energy depends on both the particle

volume fraction and the particle radius, and tends to

release by crack formation in a particle or in a matrix

[4, 5], as dependent on the difference in thermal

expansion coefficients between the material compo-

nents.

The thermal stresses as functions of a position given

by the coordinate x1 induce the x1-dependent energy

density w accumulated in an arbitrary point in the

composite material. As presented in this paper, the

‘curve’ energy density Wc as an integral of w along a

curve in the composite material, representing a func-

tion of the variable x1, is required for the determina-

tion of conditions of crack initiation and formation.

Neglecting a redistribution of the thermal stresses

during high-speed crack formation, the crack formation

analysed in this paper is accordingly related to brittle

particle and matrix.

Additionally, included in the potential energy gra-

dient Wp, the x1-dependent gradient Ws, representing

an energy barrier with the maximal value Wsmax and

simultaneously ‘surface’ energy density as an integral

of w over the surface S in the composite material,

influences the coercivity of magnetic materials as well

as magnetic domain and dislocation structure [11].

As an example, a planar magnetic domain wall with

the normal x1, representing a front between magnetic

domains with and without ordered magnetic moments,

is shifted in a magnetic material along the axis x1 from

the position x1 ¼ a to the position x1 ¼ b by the

change DHba ¼ Hb �Ha of the magnetic field intensity

H, where the position x1 ¼ b correspond to a local

maximum in the point B of the middle energy barrier

as presented in Fig. 1. Consequently, the magnetic

domain wall moves along the axis x1 to the position

x1 ¼ c at the constant intensity Hb ¼ Hc, being

stopped by the third energy barrier higher than the

second one. The position change of the magnetic

domain wall results in the change DM of the magnetic

moment M of the magnetic material. Accordingly, the

magnetic moment change DMba related to the position

change Dx ¼ c� b at DHcb ¼ Hc �Hb results in a

discrete change of the magnetization hysteresis loop,

inducing a voltage impulse in a pickup coil known as

the Barkhausen jump. The change DHba and the

Wp � x1 dependence, including the Ws � x1 function,

are reasons of the coercivity of the magnetic material

[11].

Considering the thermal-stress induced energy W

accumulated in the volume V of the solid continuum of

a general shape as presented in Fig. 2 in the form

W ¼
Z

V

w dV ¼
Z Z

S

w dS dx; ð1Þ

the parameter Ws, derived as

Ws ¼
@W

@x
¼
Z

S

w dS; ð2Þ

represents the energy gradient along the axis x1, equal

to the ‘surface’ elastic energy density related to the

surface S perpendicular to the axis x1.

Additionally, the gradient Ws is required to derive

thermal-stress induced micro- and macro-strengthen-

ing in the spherical particle and in the cell matrix

representing material components of the composite

material of a precipitate-matrix type.

Fig. 1 The energy barriers A, B, C of the potential energy
gradient Wp as a dependence on the position x1 in a composite
material. The energy barrier B exhibits the maximum for x1 ¼ b

Fig. 2 The solid continuum of a general shape with the volume
V, the surface S ? x1 and the Cartesian system Ox1x2x3ð Þ
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Cell model

As an imagination considered for an analytical mod-

elling, the composite material of the precipitate-matrix

type characterized by aperiodically distributed precip-

itates with general shapes embedded in a matrix with

finite dimensions consisted of grains is replaced by a

system consisted of periodically distributed spherical

particles embedded in an infinite matrix, neglecting

grain boundaries. To derive the thermal stresses acting

in the model system, the multi-particle-matrix system is

imaginarily divided into identical cells with the shape

to depend on a particle distribution, and accordingly

the cell represents a part of the multi-particle-matrix

system related to one spherical particle. Consequently,

the thermal stresses are investigated within the cell,

and derived formulae are valid for any cell of the

infinite matrix [12–14].

Unfortunately, mathematical techniques to derive

the elastic thermal stresses in an isotropic multi-

particle-matrix system, i.e. in a system with isotropic

components, lead to two mutually incompatible ana-

lytical models. On the one hand, formulae for thermal

stresses of the first model related to an isotropic multi-

particle-matrix system, as presented in [13], are trans-

formable, on the condition of the particle volume

fraction v = 0, to those related to an isotropic one-

particle-matrix system, as presented in [15]. On the

other hand, a geometrical condition represented by

zero radial displacement on a cell surface, as presented

in [14], and accordingly shear thermal stresses and

strains are not considered within the first analytical

model. Conversely, the second analytical model related

to an isotropic multi-particle-matrix system, as pre-

sented in [14], including formulae for radial, tangential

and shear thermal stresses and strains, non-transform-

able on the condition v = 0 to those related to an

isotropic one-particle-matrix system, considers the

condition of zero radial displacement on a cell surface.

Resulting from the particles distribution as presented

in Fig. 3, the infinite matrix is imaginarily divided into

cubic cells with the dimension d, representing an inter-

particle distance, and consequently the particle volume

fraction v of the multi-particle-matrix system, as the

ratio of the spherical particle volume Vp ¼ 4pR3=3 to

the cubic cell volume Vc ¼ d3, is derived as [13]

v ¼ Vp

Vc
¼ 4p

3

R

d

� �3

2 0;
p
6

� �
; ð3Þ

where p/6 results from d = 2R.

Due to the isotropy of the multi-particle-matrix

system, the shape symmetry of the spherical particle

and the cubic cell, the symmetrical distribution of the

cubic cells resulting from the matrix infinity, the

thermal stresses are accordingly sufficient to be inves-

tigated within one twenty-fourth of the cubic cell (see

Fig. 4), then for r 2 0; rch i, u 2 0; p=4h i, m 2 hm34; p=2i,
where rc ¼ OCj j, m34 ¼ \ x2;OC34ð Þ, C is an arbitrary

point on the cubic cell surface C1C2C3C4, and then [13]

rc ¼
d

2 cos u sin m
; ð4Þ

m34 ¼ arctan
OC12j j

C12C34j j

� �
¼ arctan

1

cos u

� �
: ð5Þ

Fig. 3 The multi-particle-matrix system consisted of the period-
ically distributed spherical particles with the radius R, embedded
in the infinite matrix imaginarily divided into the cubic cells with
the dimension d, representing an inter-particle distance, and the
Cartesian system Ox1x2x3ð Þ in the point O in the spherical
particle centre

Fig. 4 The surface C1C2C3C4 of one-eighth of the cubic cell, the
arbitrary point C on the surface C1C2C3C4 with the position
determined by the coordinates rc;u; mð Þ, and the points P;P0 in
the planes x1x2, C3C4C5C6, respectively, where rc ¼ OCj j,
PP0j j ¼ d=2, O is the spherical particle centre, d is the cubic cell

dimension (see Fig. 3). The thermal stresses are sufficient to be
investigated within one twenty-fourth of the cubic cell, then for
r 2 R; rch i, u 2 0;p=4h i, m 2 hm34;p=2i
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Resulting from the first model [13], this paper

presents derivations of the elastic energy density wq

in the spherical particle (q = p) and in the cell matrix

(q = m), and consequently the ‘curve’ and ‘surface’

elastic energy density, Wc and Ws, respectively, regard-

ing an elastic solid continuum represented by the cubic

cell with the central spherical particle. Considering the

isotropy of the multi-particle-matrix system, the cubic

cell is assumed to exhibit identical circular cracks

created in the planes x1x2, x1x3, x2x3. As presented

below in detail, the determination of the crack forma-

tion conditions considers the energy dW accumulated

in the infinitesimal volume dV of an infinitesimal prism

with the height PP0 ¼ d=2 and with the surface area

dS ¼ x12 du d x12 of a basis in the plane x1x2 in the

position x12 2 0; OC12j jh i along the axis x12 � x1x2

(see Fig. 4). Consequently, we get

dW ¼ 1

3

Z
V

w dV ¼ dS

3

Z P0

P

w dx3 ¼
1

3
Wcx12 dx12 du;

ð6Þ

and the x12-dependent ‘curve’ elastic energy density

Wc1 and Wc2 in the intervals x12 2 0;Rh i and

x12 2 R; OC12j jh i, respectively, is derived as

Wc1 ¼
Z P00

P

wp dx3 þ
Z P0

P00
wm dx3; x12 2 0;Rh i; ð7Þ

Wc2 ¼
Z P0

P

wm dx3; x12 2 R; OC12j jh i; ð8Þ

where P00 is a point of intersection of the particle

surface with the abscissa PP0 k x3 for x12 2 0;Rh i.
Similarly, considering one-eighth of the cubic cell,

the x1-dependent ‘surface’ elastic energy density Ws1

and Ws2 in the intervals x1 2 0;Rh i and x1 2 R; d=2h i
(see Fig. 5), respectively, is derived as

Ws1 ¼ 4

Z
Sp

wp dSpþ
Z

Sm

wm dSm

 !
; x1 2 0;Rh i; ð9Þ

Ws2 ¼ 4

Z
Sm

wm dSm; x1 2 R; d=2h i; ð10Þ

where the surface Sq is a part of the square surface

S1S2S3S4 ? x1 related to the spherical particle (q = p)

and to the cell matrix (q = m) for x1 2 0;Rh i, and

Sm � S1S2S3S4 for x1 2 R; d=2h i.
With regard to the section ‘Theoretical background’

representing a contribution to the first analytical model

presented in [13], this paper is accordingly suitable for

material scientists to be able to determine thermal-

stress loading including the thermal-stress induced

strengthening and the conditions of crack initiation

related to the spherical particle and to the cell matrix as

material components of the precipitate-matrix type.

With regard to the crack initiation and consequently the

crack formation, brittle material components are con-

sidered, and the redistribution of the thermal stresses

during the high-speed crack formation is neglected.

Derived formulae for the critical particle radii

resulting in the crack initiation in a particle and in a

matrix, and the critical particle volume fraction result-

ing in maximal resistance against mechanical loading

enable to predict and design properties of composite

materials with adequate accuracy, as additionally

confirmed by a good agreement of calculated values

of investigated parameters for the SiC–Si3N4 multi-

particle-matrix system with those from experimental

results [11, 16].

Additionally, with regard to theoretical physicists,

derived formulae for the x1-dependent gradient Ws,

representing an energy barrier with the maximal value

Wsmax, both presented in the section ‘Theoretical

background’, can be incorporated to physicist-created

analytical models describing the interaction of the

thermal-stress induced energy barrier with dislocations

or magnetic domain walls.

Theoretical background

Isotropic multi-particle-matrix system

Thermal stresses

The thermal radial and tangential stresses, rr and ru,

rm, derived in the system of the spherical coordinates

Fig. 5 The surface S1S2S3S4 ? x1 in the position x1 2 0;d=2h i in
one eighth of the cubic cell (see Figs. 3, 4)
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r;u; mð Þ related to the Cartesian system Ox1x2x3ð Þ (see

Fig. 6), are investigated in the point P of a continuum

along the axes xr and xu, xm of the Cartesian system

Pxrxuxm
� �

, where r is the distance from the spherical

particle centre O.

Resulting from the analytical model presented in

[13], the radial and tangential stresses of the cubic cell,

acting in the spherical particle (q = p) for r 2 0;Rh i
and in the cubic matrix (q = m) for r 2 R; rch i (see

Eq. 4), rrq and ruq, rmq, respectively, have the forms

rrp ¼ rup ¼ rmp ¼ �pb; ð11Þ

rrm ¼ �pb 1þ c6 1� R

r

� �3
" #( )

; ð12Þ

rum ¼ rmm ¼ �pb 1þ c6 1þ 1

2

R

r

� �3
" #( )

; ð13Þ

where r > 0 and r < 0 represent the tensile and

compressive stresses, respectively.

The compressive or tensile particle-matrix boundary ra-

dial stress, pb[0 or pb\0, respectively, is derived as [13]

pb ¼ c7

Z Ti

T

am � ap

� �
dT; ð14Þ

where the coefficient ci ( i ¼ 1� 10) is presented in the

section Appendix (see Eqs. 116–125); Ti and T are the

initial and final temperatures of a cooling process,

respectively; aq is the thermal expansion coefficient of

the particle (q = p) and the matrix (q = m). Consider-

ing aq to be temperature-independent, the integralR Ti

T aq dT is replaced by aq Ti � Tð Þ.

Temperature range of cooling process

With regard to a real composite material as the precip-

itate-matrix system, the initial temperature

Ti � 0:35� 0:5ð Þm represents the relaxation temperature

of the multi-particle-matrix system below which the stress

relaxation does not occur as a consequence of thermal-

activated processes [11, 16], where Tm is the minimum of

the set fTmp;Tmmg, and Tmp, Tmm are melting points of

the precipitate (= particle), the matrix, respectively.

The thermal stresses exhibit an maximal value on

the particle-matrix boundary, acted by the radial

stress, pb (see Eq. 14). Accordingly, the presented

derivations are considered in the temperature range

T 2 Tc;Tih i, where Tc is the critical final temperature

of a cooling process at which the stress, pbj j ¼ ryq,

where ryq ¼ rycq or ryq ¼ rytq is a yield stress in

compression or tension related to the compressive or

tensile stress, pb[0 or pb\0, respectively, and if

ryp\rym or ryp[rym then ryq ¼ ryp or ryq ¼ rym,

respectively. With regard to Eq. 14, the critical tem-

perature, Tc, can be derived from

c7

Z Ti

Tc

am � ap

� �
dT

����
����� ryq ¼ 0; ð15Þ

for a real isotropic multi-particle-matrix system by a

numerical method, and considering aq (q = p,m) to be

temperature-independent, Tc has the form

Tc ¼ Ti �
ryq

c7 am � ap

� ��� �� : ð16Þ

If the particle-matrix boundary bond is character-

ized by the adhesion radial stress, pa, and loaded by the

tensile radial stress, pb\0, the presented derivations

are considered for pbj j � pa, the critical temperature,

Ta, related to the condition, pbj j ¼ pa, can be derived

from Eq. 15, or has the form given by Eq. 16, both for

ryq ! pa. If Ta[Tc, the presented derivations are

considered in the temperature range T 2 Ta;Tih i.
Finally, with regard to plastic-deformable and

ceramic multi-particle-matrix systems, a contribution

to thermal stresses at temperature T\Tc is released by

plastic deformation and the system cracking [11, 16],

respectively.

Elastic energy density

Applying the Hooke laws for an isotropic continuum [1]

e11 ¼ s11r11 þ s12 r22 þ r33ð Þ; ð17Þ

Fig. 6 The axes xr, xu, xm, and the point P with the position
determined by the coordinates r ¼ OPj j;u; mð Þ, where O is the
spherical particle centre. The radial and tangential stresses in the
particle (q = p) and in the matrix (q = m), rrq and ruq, rmq, act
in the point P along the axes xr and xu, xm, respectively
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e22 ¼ s11r22 þ s12 r11 þ r33ð Þ; ð18Þ

e33 ¼ s11r33 þ s12 r11 þ r22ð Þ; ð19Þ

into the formula for the elastic energy density [1]

w ¼ 1

2

X3

i;j¼1�3

eijrij; ð20Þ

and with regard to eij, rij ¼ 0 ( i 6¼ j) and the subscript

transformations, 11! r, 22! u, 33! m, the elastic

energy density of the thermal stresses in the spherical

particle and in the cubic cell matrix, wp and wm,

respectively, are derived as

wp ¼
3p2

b

2
s11p þ 2s12p

� �
; ð21Þ

wm ¼
3p2

b

4
2c2

8 s11m þ 2s12mð Þ þ c2
6 s11m � s12mð Þ R

r

� �6
" #

:

ð22Þ

where the elastic moduli, s11q, s12q [1], for the particle

(q = p) and the matrix (q = m) are presented in the

section Appendix (see Eqs. 114, 115).

Curve integral of elastic energy density

The curve integrals within the cubic cell, Wcp, Wcm1

and Wcm2, as integrals of wp, wm and wm (see Eqs. 21,

22) along the abscissae P1P2, P2P3 and P4P5 in

the plane x1x3 in the positions x1 2 0;Rh i and x1 2
R; d= 2 cos uð Þh i (see Fig. 7), respectively, as the elastic

energy ‘curve’ density, equivalent to those along the

abscissae in the planes x1x2, x2x3 due to the isotropy

of the multi-particle-matrix system, are derived as

Wcp ¼
Z

P1P2

wp dx3 ¼
3p2

b

2
s11p þ 2s12p

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x2

1

q
;

x1 2 0;Rh i; ð23Þ

Wcm1¼
Z

P2P3

wmdx3

¼3p2
b

20
5c2

8 s11mþ2s12mð Þ R
4p
3v

� �1=3

�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2�x2

1

q" #0
B@

þ c2
6R s11m�s12mð Þ

� 1� 2R 3vð Þ1=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 4pð Þ2=3þ4x2

1 3vð Þ2=3
q
2
64

3
75

58><
>:

9>=
>;

1
CA;

x12 0;Rh i; ð24Þ

Wcm2¼
Z

P4P5

wm dx3¼
3p2

bR

20
5c2

8 s11mþ2s12mð Þ 4p
3v

� �1=3

0
B@

þ c2
6 s11m�s12mð Þ R

x1

� �5

� 1� 2x1 3vð Þ1=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 4pð Þ2=3þ4x2

1 3vð Þ2=3
q
2
64

3
75

58><
>:

9>=
>;

1
CA;

x12 R;
d

2

	 

; ð25Þ

where u ¼ \ x1x12ð Þ 2 0; 2ph i and the axis x12 � x1x2

(see Fig. 4); P1P2j j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x2

1

q
; P2P3j j ¼ d=2�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � x2
1

q
and P4P5j j ¼ d=2 for x1 2 0;Rh i and

x1 2 R; d=2h i, respectively. With regard to the term

r�6 in Eq. 22, and due to the isotropy of the multi-

particle-matrix system, the elastic energy accumulated

in the cubic cell matrix between the points P2 and P3,

and between the points P4 and P5, is equal to that

accumulated between the points at radii r ¼ OP2j j ¼ R

and r ¼ OP3j j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d=2ð Þ2þx2

1

q
, and at the radii

r ¼ OP4j j ¼ x1 and r ¼ OP5j j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d=2ð Þ2þx2

1

q
, for

x1 2 0;Rh i and x1 2 R; d=2h i, respectively. Accord-

ingly, the term r�6 dx3 (see Eqs. 22–24) is replaced by

r�6 dr, where r 2 R; OP3j jh i and r 2 x1; OP5j jh i for

x1 2 0;Rh i and x1 2 R; d=2h i, respectively.

Particle and matrix crack initiation and formation

Provided that pb\0 and then for am\ap, or pb[0

and then for am[ap (see Eqs. 11–14), the spherical

particle or the cubic cell matrix are acted by the tensile

Fig. 7 The abscissae P1P2P3 and P4P5 in the plane x12x3 (see
Fig. 4) in the positions x1 2 0;Rh i and x1 2 0; d= 2 cos uð Þh i,
respectively, perpendicular to the axis x12, where x12 � x1x2 and
u ¼ C x12; x1ð Þ 2 0;p=4h i
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thermal stresses, or the tensile radial thermal stress

and the compressive tangential thermal stresses,

respectively, and consequently, as a consequence of

releasing of the elastic energy of the thermal stresses,

equal circular cracks are assumed to be equivalently

created in the planes x1x2, x1x3, x2x3 in the spherical

particle or the cell matrix (see Fig. 6), due to the

isotropy of the multi-particle-matrix system. Resulting

from the isotropy of the multi-particle-matrix system,

the formulae (23)–(25) are also related to the plane

x01x3, and accordingly the particle or matrix cracks,

symmetrical with respect to the formation plane x1x2

(see Figs. 8–13), exhibit the same shape in all

planes x12x3, where the axis x12 � x1x2 and

u ¼ \ x1x12ð Þ 2 0; 2ph i (see Fig. 4).

The curve integrals, Wcp and Wcm1 (see Eqs. 23,

24), represent decreasing and increasing functions of

x1 2 0;Rh i, respectively, both depending on the param-

eter R, where Wcp

� �
x1¼R
¼ 0, and accordingly the sum,

Wcp þWcm1, is a decreasing, increasing or decreasing–

Fig. 8 The particle crack initialized and consequently formed in
the plane x12x3 (see Fig. 4) for R[Rp1 from the particle centre,
O, to the particle surface; the particle crack radius, rp, for
R 2 Rp1;Rp2

� �

Fig. 9 The particle crack initialized and consequently formed in
the plane x12x3 (see Fig. 4) for R[Rp2 from the particle surface
to the particle centre, O; the particle crack radius, rp, for
R 2 Rp2;Rp1

� �

Fig. 10 The particle crack simultaneously initialized and formed
in the plane x12x3 (see Fig. 4) for R[Rp1 ¼ Rp2 from the
particle centre, O, to the particle surface, and vice versa; the
particle crack radii, rp1 and rp2, of the disconnected cracks for
R 2 Rp1;Rp1=2

� �
; the position, rp, of the minimum of the

interconnected cracks for R � Rp1=2

Fig. 11 The matrix cracks initialized and formed in the plane
x12x3 (see Fig. 4) from the position x1 ¼ 0 to the position
x1 2 0; rm1h i, x1 2 0;Rh i and from the position x1 ¼ R to the
position x1 2 R; rm2h i, x1 2 R; d= 2 cos uð Þh i for R 2 Rm1;Rm2h i,
R � Rm2 and R 2 Rm2;Rm3h i, R � Rm3, respectively; the matrix
crack radii, rm1, rm2

Fig. 12 The matrix cracks initialized and formed in the plane
x12x3 (see Fig. 4) from the position x1 ¼ R to the positions
x1 2 rm1;Rh i, x1 2 0;Rh i and x1 2 R; rm2h i, x1 2 R;d= 2 cos uð Þh i
for R 2 Rm2;Rm1h i, R � Rm1 and R 2 Rm2;Rm3h i, R � Rm3,
respectively; the matrix crack radii, rm1, rm2
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increasing dependence on x1 2 0;Rh i, exhibiting a

minimum as a function of the parameter R. With

regard to the decreasing, increasing or decreasing–

increasing x1-dependence of the sum, the circular

particle crack is thus formed from the particle centre,

O, to the particle surface (see Fig. 8), vice versa

(see Fig. 9), or simultaneously from the particle centre

and the particle surface (see Fig. 10), resulting

from the conditions, Wcp þWcm1

� �
x1¼0

[ Wcm1ð Þx1¼R,

Wcp þWcm1

� �
x1¼0

\ Wcm1ð Þx1¼R or Wcp þWcm1

� �
x1¼0
¼

Wcm1ð Þx1¼R, from which the coefficient, c9

(see Eq. 124), is determined as c9[0, c9\0 or

c9 ¼ 0, and consequently, the function, fp, represents

a decreasing, increasing or decreasing-increasing

x1-dependence, respectively.

Similarly, with regard to c9[0, c9\0 or c9 ¼ 0, the

matrix crack is formed from the position x1 ¼ 0 to the

position x1 ¼ R (see Fig. 11), vice versa (see Fig. 12),

or simultaneously from the positions x1 ¼ 0 and

x1 ¼ R (see Fig. 13), respectively.

Considering c9[0, c9\0 and c9 ¼ 0, critical particle

radii, as reasons of the formation of particle and matrix

cracks of the infinitesimal length, are determined with

respect to positions of the maximum value of

Wcp þWcm1, then for x1 ¼ 0, x1 ¼ R and x1 ¼ 0 or

x1 ¼ R, respectively.

The coefficient c9 depends on the particle volume

fraction, v, and on the material parameters of the

particle, s11p, s12p, and considering c9 as a function of v,

the critical particle volume fraction, v0 2 0; p=6ð Þ,
related to determination of a direction of the particle

cracking, can be derived from the condition, c9 ¼ 0,

for a concrete isotropic multi-particle-matrix system by

a numerical method.

Particle crack initiation and formation I After the

particle crack formation, the elastic energy,

dWp ¼ Wcp þWcm1

� �
x1 du dx1=3, accumulated in the

cubic cell infinitesimal volume of the dimensions

x1 du� dx1 � d=2, and being a consequence of the

particle cracking of the infinitesimal surface area,

dSp ¼ x1 du dsp, is in the equilibrium state with

the energy of an infinitesimal crack surface of

the particle, dWcsp ¼ cp dsp dx1 du, and then

dWp ¼ dWcsp [11, 16], where the multiplication factor

1/3 results from the formation of equal circular particle

cracks in the planes x1x2, x1x3, x2x3 (see Fig. 6);

cp ¼ s11pK2
ICp [11, 16] is the particle crack surface energy

per unit surface area; KICp is the particle fracture

toughness; dsp ¼ dx1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @fp=1

� �2
q

[17] is infinitesimal

length of the curve, fp, describing the particle crack

shape in the interval x1 2 0;Rh i (see Figs. 8–10),

representing a function of x1 and the parameter R,

corresponding to the x1- and R-dependence of

Wcp þWcm1. With regard to dWp ¼ dWcsp, we get

@fp

@x1
¼ � 1

3s11pK2
ICp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wcp þWcm1

� �2� 3s11pK2
ICp

� �2
r

;

ð26Þ

and accordingly, the energy condition for the particle

crack formation, is derived as

Wcp þWcm1 � 3s11pK2
ICp[0; ð27Þ

fulfilled for the particle radius greater than critical, as a

reason of the particle cracking.

Considering such v when c9[0 (see Eq. 124), the

critical particle radii, Rp1 and Rp2, as a reason of the

crack initiation and consequently the crack formation

in the particle from the particle centre, O, to the

particle surface, and as a reason of the particle crack

tip on the particle surface (see Fig. 8), represent roots

of Eqs. 28 and 29 in the forms

Wcp þWcm1

� �
x1¼0
�3s11pK2

ICp ¼ 0; ð28Þ

Wcp þWcm1

� �
x1¼R
�3s11pK2

ICp ¼ 0; ð29Þ

as functions of the variable R, resulting from the

condition for the particle crack tip in the particle

centre in the position x1 ¼ 0 and on the particle

surface in the position x1 ¼ R, @fp=@x1

� �
x1¼0
¼ 0

and @fp=@x1

� �
x1¼R
¼ 0, respectively, related to an

ideal-brittle particle [11, 16], where Rp1\Rp2 for

Fig. 13 The matrix cracks simultaneously initialized and formed
in the plane x12x3 (see Fig. 4) from the positions x1 ¼ 0 and
x1 ¼ R to the positions x1 2 0; rm11h i, x1 2 0; rm1h i and
x1 2 rm12;Rh i, x1 2 rm1;Rh i for R 2 Rm1;Rm1=2

� �
, R � Rm1=2,

respectively, and from the position x1 ¼ R to the position
x1 2 R; rm2h i, x1 2 R; d= 2 cos uð Þh i for R 2 Rm2;Rm3h i,
R � Rm3, respectively; the matrix crack radii, rm11, rm12, of the
disconnected cracks; the position, rm1, of the minimum of the
interconnected cracks
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c9[0. With regard to Eqs. 23, 24, 28, 29, Rp1 and Rp2

are derived as

1

Rp1
¼ 1

2s11p

pb

KICp

� �2

� s11pþ2s12pþ
1

10
5c2

8 s11mþ2s12mð Þ 4p
3v

� �1=3

�2

" #( 

þ c2
6 s11m� s12mð Þ 1�32

3v

4p

� �5=3
" #)!

;

ð30Þ

1

Rp2
¼ 1

20s11p

pb

KICp

� �2

� 5c2
8 s11mþ2s12mð Þ 4p

3v

� �1=3

0
B@

þ c2
6 s11m�s12mð Þ 1� 2 3vð Þ1=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pð Þ2=3þ4 3vð Þ2=3

q
2
64

3
75

58><
>:

9>=
>;

1
CA:

ð31Þ

The particle crack radius (see Fig. 8), rp, determin-

ing the particle crack tip position, representing a root

of the equation

Wcp þWcm1 � 3s11pK2
ICp ¼ 0; ð32Þ

as a function of the variable x1 and the parameter

R 2 Rp1;Rp2

� �
, resulting from the condition for the

particle crack tip in the position x1 ¼ rp, @fp=@x1

� �
x1¼rp

¼ 0 (see Eq. 26), can be derived from Eq. 32 for a

concrete isotropic multi-particle-matrix system by a

numerical method, where rp ¼ 0 and rp ¼ Rp2 for

R ¼ Rp1 and R ¼ Rp2, respectively.

With regard to Eq. 26, the function, fp, describing

the particle crack shape in the intervals x1 2 0; rp

� �
and x1 2 0;Rh i for R 2 Rp1;Rp2

� �
and R � Rp2 (see

Fig. 8), respectively, has the form

fp¼
1

3s11pK2
ICp

� bp�
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

WcpþWcm1

� �2� 3s11pK2
ICp

� �2
r

dx1

" #
;

ð33Þ

representing a decreasing function of x1, and

accordingly the sign – in Eq. 26 is considered. The

integral can be derived for a concrete isotropic multi-

particle-matrix system by a numerical method, and

with respect to the boundary conditions given by

Eqs. 34 and 35 in the forms

x1 ¼ rp; fp ¼ 0; ð34Þ

R ¼ Rp2; x1 ¼ Rp2; fp ¼ 0; ð35Þ

related to the particle radius R 2 Rp1;Rp2

� �
and

R � Rp2, respectively, the integration constant, bp, is

derived for R 2 Rp1;Rp2

� �
as

bp ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Wcp þWcm1

� �2� 3s11pK2
ICp

� �2
r

dx1

" #

x1¼rp

;

ð36Þ

and for R � Rp2 as

bp ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

WcpþWcm1

� �2� 3s11pK2
ICp

� �2
r

dx1

" #

x1¼Rp2;R¼Rp2

:

ð37Þ

Particle crack initiation and formation II Considering

such v when c9\0 (see Eq. 124), the critical particle radii,

Rp2 and Rp1 (see Eqs. 30, 31), are a reason of the crack

initiation and consequently the crack formation in the

particle from the particle surface in the position x1 ¼ R

to the particle centre, O, and a reason of the particle

crack tip in the particle centre in the position x1 ¼ 0

(see Fig. 9), respectively, where Rp2\Rp1 for c9\0.

With regard to Eq. 26, the function, fp, describing

the particle crack shape in the intervals x1 2 rp;R
� �

and x1 2 0;Rh i for R 2 Rp2;Rp1

� �
and R � Rp1 (see

Fig. 9), respectively, has the form

fp ¼
1

3s11pK2
ICp

� bpþ
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

WcpþWcm1

� �2� 3s11pK2
ICp

� �2
r

dx1

" #
;

ð38Þ

representing an increasing function of x1, and

accordingly the sign + in Eq. 26 is considered. With

respect to the boundary conditions given by Eqs. 39

and 40 in the forms

x1 ¼ rp; fp ¼ 0; ð39Þ

R ¼ Rp1; x1 ¼ 0; fp ¼ 0; ð40Þ

related to the particle radius R 2 Rp2;Rp1

� �
and

R � Rp1, respectively, the integration constant, bp, is

derived for R 2 Rp2;Rp1

� �
as
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bp ¼ �
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Wcp þWcm1

� �2� 3s11pK2
ICp

� �2
r

dx1

" #

x1¼rp

;

ð41Þ

and for R � Rp1 as

bp ¼ �
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

WcpþWcm1

� �2� 3s11pK2
ICp

� �2
r

dx1

" #

x1¼0; R¼Rp1

:

ð42Þ

The particle crack radius (see Fig. 9), rp (see

Eq. 41), represents a root of Eq. 32, as a function of

the variable x1 and the parameter R 2 Rp2;Rp1

� �
, and

can be derived from Eq. 32, along with the integral in

Eq. 38, for a concrete isotropic multi-particle-matrix

system by a numerical method, where rp ¼ 0 and

rp ¼ Rp1 for R ¼ Rp2 and R ¼ Rp1, respectively.

Particle crack initiation and formation III Considering

such v when c9 ¼ 0 (see Eq. 124), the critical particle

radii, Rp1, Rp2 and Rp1/2, are a reason of the crack

initiation and consequently the crack formation in the

particle simultaneously from the particle centre in the

position x1 ¼ 0 and from the particle surface in the

position x1 ¼ R, and a reason of the particle crack tip

in the position x1 ¼ R=2 (see Fig. 10), respectively,

where Rp1 ¼ Rp2 for c9 ¼ 0, and Rp1=2[Rp1

represents a root of Eq. 28 as a function of the

variable R on the condition x1 ¼ R=2 in the form

1

Rp1=2
¼ 1

20s11p

pb

KICp

� �2

� 5c2
8 s11mþ2s12mð Þ 4p

3v

� �1=3

�
ffiffiffi
3
p

" #0
B@

þ c2
6 s11m�s12mð Þ 1� 2 3vð Þ1=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pð Þ2=3þ 3vð Þ2=3

q
2
64

3
75

58><
>:

9>=
>;

1
CA:

ð43Þ

The particle crack is described by the functions,

fp1 and fp2, decreasing and increasing in the inter-

vals x1 2 0; rp1

� �
, x1 2 0; rp

� �
and x1 2 rp2;R

� �
,

x1 2 rp;R
� �

(see Fig. 10), respectively, related to the

disconnected, interconnected particle cracks, as de-

pended on the parameter R. The particle crack radii,

rp1, rp2, and the position in which the function,

fp ¼ fp1 þ fp2, describing the interconnected particle

cracks exhibits a minimum, rp, represent roots of

Eq. 32, as a function of the variable x1 and the

parameter R, for R 2 Rp1;Rp1=2

� �
and Rp1=2, respec-

tively, and can be derived from Eq. 32 for a concrete

isotropic multi-particle-matrix system by a numerical

method, where rp1 ¼ rp2 ¼ 0 and rp1 ¼ rp2 ¼ Rp1=2=2

for R ¼ Rp1 and R ¼ Rp1=2, respectively.

With respect to the boundary conditions given by

Eqs. 44– 46 in the forms

x1 ¼ rp1; fp1 ¼ 0; ð44Þ

x1 ¼ rp2; fp2 ¼ 0; ð45Þ

R ¼ Rp1=2; x1 ¼
Rp1=2

2
; fp1 ¼ fp2 ¼ 0; ð46Þ

related to the particle radius R 2 Rp1;Rp1=2

� �
and

R � Rp1=2, respectively, the functions, fp1 and fp2, are

given by Eqs. 33, 36, 37, and Eqs. 38, 41, 42, on the

conditions x1 ¼ rp1 and x1 ¼ rp2 in Eqs. 36 and 41 for

R 2 Rp1;Rp1=2

� �
, respectively, and on the condition

x1 ¼ Rp1=2, R ¼ Rp1=2 in Eqs. 37, 42 for Rp1=2.

Matrix crack initiation and formation I Considering

the particle-matrix boundary adhesion radial stress, pa,

provided that pb[0 and then for am\ap, the ca-

multiple of rrm, rum, rmm, and c2
a -multiple of wp, wm,

the latter resulted from the dependence, w / r2 (see

Eq. 20), are concerned in the matrix crack formation,

where the multiplier, ca, is derived as

ca ¼ 1� pa

pb
: ð47Þ

After the matrix crack initialization and formation,

the elastic energy related to the positions x1 2 0;Rh i
and x1 2 0; d=2h i, dWm ¼ c2

a Wcp þWcm1

� �
x1 du dx1=3

and dWm ¼ c2
aWcm2x1 du dx1=3, respectively, accumu-

lated in the cubic cell infinitesimal volume of the

dimensions x1 du� dx1 � d=2, and being a conse-

quence of the matrix cracking of the infinitesimal

surface area, dSm ¼ x1 du dsm, is in the equilibrium

state with the energy of an infinitesimal crack surface

of the matrix, dWcsmi ¼ cmdsmi dx1 du (i = 1,2), and

then dWm ¼ dWcsmi [11, 16], where the multiplication

factor 1/3 results from the formation of equal circular

particle cracks in the planes x1x2, x1x3, x2x3 (see

Fig. 6); cm ¼ s11mK2
ICm, where the multiplication factor

1/3 results from the is the matrix crack surface energy

per unit surface area; KICm is the matrix fracture

toughness; dsmi ¼ dx1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ mi=@x1ð Þ2

q
[17] is infinites-
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imal length of the curves, fm1 and fm2, describing the

matrix crack shape in the intervals x1 2 0;Rh i and

x1 2 R; d= 2 cos uð Þh i (see Fig. 11), respectively, repre-

senting functions of x1 and the parameter R, corre-

sponding to the x1- and R-dependence of Wcm2, where

u ¼ \ x1x12ð Þ 2 0; 2ph i and the axis x12 � x1x2 (see

Fig. 4). With regard to dWm ¼ dWcsmi, we get

@fm1

@x1
¼ � 1

3s11mK2
ICm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c4

a Wcp þWcm1

� �2� 3s11mK2
ICm

� �2
q

;

ð48Þ

@fm2

@x1
¼ � 1

3s11mK2
ICm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c4

aW2
cm2 � 3s11mK2

ICm

� �2
q

; ð49Þ

and accordingly, the energy condition for the particle

crack formation, is derived in the interval x1 2 0;Rh i as

c2
a Wcp þWcm1

� �
� 3s11mK2

ICm[0; ð50Þ

and in the interval x1 2 R; d= 2 cos uð Þh i as

c2
aWcm2 � 3s11mK2

ICm[0; ð51Þ

both fulfilled for the particle radius greater than

critical, as a reason of the matrix cracking.

Considering such v when c9[0 (see Eq. 124), the

critical particle radii, Rm1 and Rm2, as a reason of the

crack initiation and consequently the crack formation

in the matrix from the position x1 ¼ 0 to the position

x1[0, and as a reason of the matrix crack tip in the

position x1 ¼ R (see Fig. 11), represent roots of

Eqs. 52 and 53 in the forms

c2
a Wcp þWcm1

� �
x1¼0
�3s11mK2

ICm ¼ 0; ð52Þ

c2
a Wcm2ð Þx1¼R�3s11mK2

ICm ¼ 0; ð53Þ

as functions of the variable R, resulting from the

conditions for the matrix crack tip, @fm1=1ð Þx1¼0¼ 0

and @fm1=1ð Þx1¼R¼ 0, respectively, related to an ideal-

brittle particle [11, 16], where Rm1\Rm2 for c9[0. With

regard to Eqs. 35, 36, 52, 53, Rm1 and Rm2 are derived as

1

Rm1
¼ 1

2s11m

capb

KICm

� �2

� s11pþ2s12pþ
1

10
5c2

8 s11mþ2s12mð Þ 4p
3v

� �1=3

�2

" #( 

þc2
6 s11m�s12mð Þ 1�32

3v

4p

� �5=3
" #)!

: ð54Þ

1

Rm2
¼ 1

20s11m

capb

KICm

� �2

� 5c2
8 s11mþ2s12mð Þ 4p

3v

� �1=3

0
B@

þ c2
6 s11m� s12mð Þ 1� 2 3vð Þ1=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pð Þ2=3þ4 3vð Þ2=3

q
2
64

3
75

58><
>:

9>=
>;

1
CA:

ð55Þ

The matrix crack radius (see Fig. 11), rm1, deter-

mining the matrix crack tip position, representing a

root of the equation

c2
a Wcp þWcm1

� �
� 3s11mK2

ICm ¼ 0; ð56Þ

as a function of the variable x1 and the parameter

R 2 Rm1;Rm2h i, resulting from the condition for the

particle crack tip in the position x1 ¼ rm1, @fm1=ð
@x1Þx1¼rm1

¼ 0 (see Eq. 48), can be derived from Eq. 56

for a concrete isotropic multi-particle-matrix system by

a numerical method, where rm1 ¼ 0 and rm1 ¼ Rm2 for

R ¼ Rm1 and R ¼ Rm2, respectively.

With regard to Eq. 48, the function, fm, describing

the matrix crack shape in the intervals x1 2 0; rm1h i
and x1 2 0;Rh i for R 2 Rm1;Rm2h i and R � Rm2 (see

Fig. 11), respectively, has the form

fm1 ¼
1

3s11mK2
ICm

� bm1�
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c4
a WcpþWcm1

� �2� 3s11mK2
ICm

� �2
q

dx1


 �
;

ð57Þ

representing a decreasing function of x1, and accordingly

the sign - in Eq. 48 is considered. The integral can be

derived for a concrete isotropic multi-particle-matrix

system by a numerical method, and with respect to the

boundary conditions given by Eqs. 58 and 59 in the

forms

x1 ¼ rm1; fm1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2

m1

q
; ð58Þ

x1 ¼ R; fm1ð Þx1¼R¼ fm2ð Þx1¼R; ð59Þ

related to the particle radius R 2 Rm1;Rm2h i and
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R � Rm2, respectively, the integration constant, bm1, is

derived for R 2 Rm1;Rm2h i as

bm1 ¼ 3s11mK2
ICm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2

m1

q

þ
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c4
a Wcp þWcm1

� �2� 3s11mK2
ICm

� �2
q

dx1


 �
x1¼rm1

;

ð60Þ

and for R � Rm2 as

bm1 ¼bm2�
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c4
aW2

cm2� 3s11mK2
ICm

� �2
q
�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c4

a WcpþWcm1

� �2� 3s11mK2
ICm

� �2
q �

dx1

�
x1¼R

;

ð61Þ

where the function, fm2, and the integration constant,

bm2, are given by Eqs. 76 and 79, 80, respectively.

Matrix crack initiation and formation II Considering

such v when c9\0 (see Eq. 124), the critical particle

radii, Rm2 and Rm1, are a reason of the crack initiation

and consequently the crack formation in the matrix

from the position x1 ¼ R to the position x1\R, and a

reason of the matrix crack tip in the position x1 ¼ 0

(see Fig. 12), respectively, where Rm2\Rm1 for c9\0.

With regard to Eq. 48, the function, fm1, describing

the matrix crack shape in the intervals x1 2 0; rm1h i
and x1 2 0;Rh i for R 2 Rm2;Rm1ð Þ and R � Rm1 (see

Fig. 12), respectively, has the form

fm1 ¼
1

3s11mK2
ICm

� bm1 þ
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c4
a Wcp þWcm1

� �2� 3s11mK2
ICm

� �2
q

dx1


 �
;

ð62Þ

representing an increasing function of x1, and

accordingly the sign + in Eq. 48 is considered. With

respect to the boundary conditions given by Eqs. 58

and 59 related to the particle radius R 2 Rm2;Rm1h i
and Rm1, respectively, the integration constant, bm1, is

derived for R 2 Rm2;Rm1h i as

bm1 ¼ 3s11mK2
ICm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2

m1

q

�
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c4
a Wcp þWcm1

� �2� 3s11mK2
ICm

� �2
q

dx1


 �
x1¼rm1

;

ð63Þ

and for R � Rm1 as

bm1 ¼bm2�
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c4
aW2

cm2� 3s11mK2
ICm

� �2
q
�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c4

a WcpþWcm1

� �2� 3s11mK2
ICm

� �2
q �

dx1

�
x1¼R

;

ð64Þ

where the function, fm2, and the integration constant,

bm2, are given by Eqs. 76 and 79, 80, respectively. The

matrix crack radius (see Fig. 12), rm1 (see Eq. 63),

represents a root of Eq. 56, as a function of the

variable x1 and the parameter R 2 Rm2;Rm1h i, and can

be derived from Eq. 56, along with the integral in

Eq. 62, for a concrete isotropic multi-particle-matrix

system by a numerical method, where rm1 ¼ 0 and

rm1 ¼ Rm1 for R ¼ Rm2 and R ¼ Rm1, respectively.

Matrix crack initiation and formation III Considering

such v when c9 ¼ 0 (see Eq. 124), the critical particle

radii, Rm1, Rm2 and Rm1/2, are a reason of the crack

initiation and consequently the crack formation in the

matrix simultaneously from the positions x1 ¼ 0, x1 ¼ R

to the positions x1[0, x1\R, respectively, and a reason

of the matrix crack tip in the position x1 ¼ R=2 (see

Fig. 13), respectively, where rm1 ¼ Rm2 for c9 ¼ 0, and

Rm1=2[Rm1
represents a root of Eq. 52 as a function of the

variable R on the condition x1 ¼ R=2 in the form

1

Rm1=2
¼ 1

4s11m

capb

KICm

� �2

�
ffiffiffi
3
p

s11p þ 2s12p

� �
þ c2

8 s11mþ 2s12mð Þ 4p
3v

� �1=3

�
ffiffiffi
3
p

" #0
B@

þ c2
6

5
s11m� s12mð Þ 1� 2 3vð Þ1=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pð Þ2=3þ 3vð Þ2=3

q
2
64

3
75

58><
>:

9>=
>;

1
CA:

ð65Þ

The matrix crack is described by the functions, fm11

and fm12, decreasing and increasing in the inter-

vals x1 2 0; rm11h i, x1 2 0; rm1h i and x1 2 rm12;Rh i,
x1 2 rm1;Rh i (see Fig. 13), respectively, related to the

disconnected, interconnected matrix cracks, as de-

pended on the parameter R. The matrix crack radii,

rm11, rm12, and the position in which the function,

fm1 ¼ fm11 þ fm12, describing the interconnected parti-

cle cracks exhibits a minimum, rm1, represent roots of

Eq. 56, as a function of the variable x1 and the
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parameter R, for R 2 Rm1;Rm1=2

� �
and R � Rm1=2,

respectively, and can be derived from Eq. 56 for a

concrete isotropic multi-particle-matrix system by a

numerical method, where rm11 ¼ rm12 ¼ 0 and

rm11 ¼ rm12 ¼ Rm1=2=2 for R ¼ Rm1 and R ¼ Rm1=2,

respectively.

With regard to Eq. 48, the functions, fm11 and fm12,

have the forms

fm11¼
1

3s11mK2
ICm

� bm11�
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c4
a WcpþWcm1

� �2� 3s11mK2
ICm

� �2
q

dx1


 �
;

ð66Þ

fm12¼
1

3s11mK2
ICm

� bm12þ
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c4
a WcpþWcm1

� �2� 3s11mK2
ICm

� �2
q

dx1


 �
;

ð67Þ

representing increasing and decreasing function of x1,

and accordingly the sign – and + in Eqs. 66 and 70 are

considered, respectively. The integrals can be derived

for a concrete isotropic multi-particle-matrix system

by a numerical method, and with respect to the

boundary conditions given by Eqs. 68, 69 and 70, 74

in the forms

x1 ¼ rm11; fm11 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2

m11

q
; ð68Þ

x1 ¼ rm12; fm12 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2

m12

q
; ð69Þ

x1 ¼ rm1; fm11 ¼ fm12; ð70Þ

x1 ¼ rm1; fm11 ¼ fm12; ð71Þ

related to the particle radius R 2 Rm1;Rm1=2

� �
and

R � Rm1=2, respectively, the integration constants, bm11

and bm12, are given by Eqs. 45 and 54, replacing the

term rm1 by the terms rm11 and rm12, respectively, for

R 2 Rm1;Rm1=2

� �
, and derived for R � Rm1=2 as

b11m

¼bm2þ2

Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c4

a WcpþWcm1

� �2� 3s11mK2
ICm

� �2
q

dx1


 �
x1¼rm1

�
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c4
a WcpþWcm1

� �2� 3s11mK2
ICm

� �2
q

dx1


 �
x1¼R

�
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c4
aW2

cm2� 3s11mK2
ICm

� �2
q

dx1


 �
x1¼R

;

ð72Þ

bm12

¼ bm2�
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c4
a Wcp þWcm1

� �2� 3s11mK2
ICm

� �2
q

dx1


 �
x1¼R

�
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c4
aW2

cm2 � 3s11mK2
ICm

� �2
q

dx1


 �
x1¼R

;

ð73Þ

where the function, fm2, and the integration constant,

bm2, are given by Eqs. 76, 79, 80, respectively.

Matrix crack initiation and formation IV With regard

to the function, fm2, describing the matrix crack shape in

the interval x1 2 R;d= 2 cos uð Þh i (see Figs. 4, 12, 13),

the critical particle radius, Rm2, given by Eq. 55, is also

a reason of the crack initiation and consequently the

crack formation in the matrix from the position x1 = R

to the position x1[R. Consequently, the critical

particle radius, Rm3, resulting from the condition for

the matrix crack tip on the cell surface in the position

x1 ¼ d= 2 cos uð Þ, m2=@x1ð Þx1¼d= 2 cos uð Þ¼ 0, related to an

ideal-brittle matrix [11, 16], corresponding to a

connection of the matrix cracks in neighbouring cells

between the points C1 and C12 (see Fig. 4), where

Rm2\Rm3, represents a root of Eq. 53 as a function of

the variable R on the condition x1 ¼ d= 2 cos uð Þ, and

regarding Eq. 3 is derived as an increasing function of

the angle / in the form

1

Rm3
¼ 1

20s11m

capb

KICm

� �2

� 5c2
8 s11m þ 2s12mð Þ 4p

3v

� �1=3
(

þ32c2
6 cos5 u s11m � s12mð Þ 3v

4p

� �5=3

� 1� 1

1þ cos2 uð Þ5=2

" #)
: ð74Þ

The matrix crack radius (see Figs. 12, 13), rm2,

determining the matrix crack tip position, representing

a root of the equation

c2
aWcm2 � 3s11mK2

ICm ¼ 0; ð75Þ

as a function of the variable x1 and the parameter

R 2 Rm2;Rm3h i, resulting from the condition for the

particle crack tip in the position x1 ¼ rm2, @fm2=ð
@x1Þx1¼rm2

¼ 0 (see Eq. 49), can be derived from Eq. 75

for a concrete isotropic multi-particle-matrix system by

a numerical method.
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With regard to Eq. 49, the function, fm2, describing

the matrix crack shape in the intervals x1 2 R; rm2h i
and x1 2 R; d= 2 cos uð Þh i for R 2 Rm2;Rm3h i and

R � Rm3 (see Figs. 12, 13), respectively, has the form

fm2 ¼
1

3s11mK2
ICm

� bm2 �
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c4
aW2

cm2 � 3s11mK2
ICm

� �2
q

dx1


 �
:

ð76Þ

The integral can be derived for a concrete isotropic

multi-particle-matrix system by a numerical method,

and with respect to the boundary conditions given by

Eqs. 77 and 78 in the forms

x1 ¼ rm2; fm2 ¼ 0; ð77Þ

R ¼ Rm3; x1 ¼
d

2 cos u
; fm2 ¼ 0; ð78Þ

related to the particle radius R 2 Rm2;Rm3h i and

R � Rm3, respectively, the integration constant, bm1, is

derived for R 2 Rm2;Rm3h i as

bm2 ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c4
aW2

cm2 � 3s11mK2
ICm

� �2
q

dx1


 �
x1¼rm2

; ð79Þ

and for R � Rm3 as

bm2

¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c4
aW2

cm2 � 3s11mK2
ICm

� �2
q

dx1


 �
x1¼d= 2 cos uð Þ; R¼Rm3

:

ð80Þ

Surface integral of elastic energy density

The surface integral, Wsp and Wsm1, of wp and wm (see

Eqs. 21, 22) over the surfaces P2P3P4 k x2x3 and

P1P2P4P5 k x2x3 (Fig. 14), representing the elastic

energy gradient within the spherical particle and the

cubic cell matrix along the axis x1 2 0;Rh i (Figs. 3, 14),

Wsp ¼ @Wp=@x1 and Wsm1 ¼ @Wm=@x1, respectively,

as the elastic energy ‘surface’ density, equivalent to

those along the axes x2, x3 due to the isotropy of the

multi-particle-matrix system, has the form

Wsp ¼
Z

Sp

wp dSp ¼ 4

Z p=2

0

Z R2

0

wpr23 dr23 dn

¼ 3pp2
b

2
s11p þ 2s12p

� �
R2 � x2

1

� �
;1 2 0;Rh i; ð81Þ

Wsm1¼
Z

Sm

wm dSm¼ 8

Z p=4

0

Z R23

R2

wmr23 dr23 dn

¼3p2
b

8
4c2

8 s11mþ2s12mð Þ R2 4p
3v

� �2=3

�p R2�x2
1

� �" #(

þR2c2
6 s11m� s12mð Þ p�4c11R4

� �)
; x1 2 0;Rh i;

ð82Þ

and then, for x1 2 0;Rh i, dSq ¼ r23 dr23 dn is an infini-

tesimalpart in thepointPof the spherical particle (q = p)

or the cubic cell matrix (q = m) on the surfaces

Sp � P2P31P32 k x2x3 or Sm � P11P2P32P33P12 k x2x3

for r23 2 0;R2h i or r23 2 R2;R23h i (Figs. 14, 15), respec-

tively, where P2P31P32;P11P2P32P33P12 � P1P2P3P4P5

(Fig. 14); r23 ¼ P31Pj j; P31P2x3; R ¼ OP2j j ¼ OP32j j;

Fig. 14 The planes P1P2P3P4P5 k x2x3 and P6P7P8 k x2x3 in the
positions x1 2 0;Rh i and x1 2 R; d=2h i, respectively, in the cubic
cell of the dimension d, containing the spherical particle of the
radius R (Fig. 3)

Fig. 15 The planes P2P31P32 k x2x3 and P11P2P32P33P23P12 k
x2x3 of the spherical particle of the radius R and of the cubic cell
matrix of the dimension d (Fig. 3), included, along with the point
P, in the plane P1P2P3P4P5 k x2x3 in the position x1 2 0;Rh i
(Fig. 14)
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R2 ¼ P31P2j j ¼ P31P32j j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � x2

1

q
;

R23 ¼ P31P23j j ¼ d=ð2 cos nÞ; P31P2;P31P23 k x2x3; and

the coordinate r in Eq. 22 is derived as r ¼ OPj j ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

23 þ x2
1

q
. Due to the isotropy of the multi-particle-

matrix system, the angle n is sufficient to be varied in the

interval n 2 0; p=4h i.
The surface integral, Wsm2, of wm (see Eq. 22)

over the surface P6P7P8 k x2x3 (Fig. 14), represent-

ing the elastic energy gradient within the cubic

cell along the axis x1 2 R; d=2h i (Figs. 3, 14),

Wsm2 ¼ @Wm=@x1, equivalent to those along the axes

x2, x3, has the form

Wsm2 ¼
Z

Sm

wm dSm ¼ 8

Z p=4

0

Z R67

0

wmr67 dr67 dn

¼ 3p2
bR2

8
4c2

8

4p
3v

� �2=3

s11m þ 2s12mð Þ
(

þ c2
6 s11m � s12mð Þ p� 4c11x4

1

� � R

x1

� �4
)
;

x1 2 R;
d

2

	 

; ð83Þ

and then, for x1 2 R; d=2h i, dSm ¼ r67 dr67 dn is an

infinitesimal part in the point P of the cubic cell matrix

on the surface Sm62P72P73P63 k x2x3 (Figs. 14, 16) for

r67 ¼ P71Pj j 2 0;R67h i, respectively, where P61P71P72

P67P626P7P8 (Fig. 14); P71P k x2x3; R67 ¼ P71P67j j ¼
d=ð2 cos nÞ; P71P67 k x2x3; and the coordinate r in

Eq. 22 is derived as r ¼ OPj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

67 þ x2
1

q
. Due to

the isotropy of the multi-particle-matrix system, the

angle n is sufficient to be varied in the interval

n 2 0; p=4h i.

Alternatively, the surface integral, Wsm2, of wm (see

Eq. 22) over the surface P6P7P8 k x2x3 (Fig. 14), is

also derived as

Wsm2 ¼
Z

Sm

wm dSm ¼ 4

Z u73

0

Z p=2

m6

wmr2 du dm

¼ 3p2
bR2

8
4c2

8

4p
3v

� �2=3

s11m þ 2s12mð Þ
"

þc2
6c17 s11m � s12mð Þ R

x1

� �4
#
;

x1 2 R;
d

2

	 

; ð84Þ

and then, for x1 2 R; d=2h i, dSm ¼ r2 du dm represents

an infinitesimal part in the point P of the cubic cell matrix

on the surface Sm62P72P73P63 k x2x3 (Figs. 14, 17) for

r ¼ OPj j ¼ x1= cos u sin mð Þ, u 2 0;u73h i, m 2 m6; p=2h i,
where P62P72P73P63 � P6P7P8 (Fig. 14); and the angles

u73 ¼ \ OP72;OP73ð Þ, m6 ¼ \ x3;OP6ð Þ are presented in

the section Appendix (see Eqs. 134, 135).

The x1-dependence of Wsp þWsm1 and Wsm2 exhibits

concave and convex courses in the intervals x1 2 0;Rh i
and x1 2 R; d=2h i, respectively. As a reason of material

properties (e.g. coercivity, dislocation motion) [11], the

maximum, Wsmax ¼ Wsp þWsm1

� �
x1¼0

(see Eqs. 81, 82),

has the form

Wsmax ¼
3pp2

bR2

2
s11p þ 2s12p

� �

þ 3p2
bR2

8
4c2

8 s11m þ 2s12mð Þ 4p
3v

� �2=3

�p

" #(

þ c2
6 s11m � s12mð Þ p� 4c11R4

� �)
: ð85Þ

Fig. 16 The plane P62P72P73P68P63 k x2x3 of the cubic cell
matrix of the dimension d (Fig.3), included, along with the point
P, in the plane P6P7P8 k x2x3 in the position x1 2 R; d=2h i
(Fig.14)

Fig. 17 The plane P62P72P73P63 k x2x3 of the cubic cell matrix
of the dimension d (Fig. 3), included, along with the point P, in
the plane P6P7P8 k x2x3 in the position x1 2 R; d=2h i (Fig. 14)
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Particle and matrix thermal-stress induced strengthening

Considering the planes P1P2P3P4P5 and P6P7P8 to be

loaded by the stress, r, constant over the individual

plane in the positions x1 0;Rh i and x1 R; d=2h i,
respectively, the elastic energy density, wrq, induced

by the stress, rq, acting along the axis x1 in the particle

(q = p) and the cubic cell matrix (q = m), is derived as

[1]

wrq
¼ e11qrq

2
¼

s11qr2
q

2
: ð86Þ

where e11q is the strain along the axis x1.

The elastic energy gradient within the spherical

particle and the cubic cell along the axis x1 (Figs. 3, 14)

is Wsrq
¼
R

Sq
wrq

Sq, where Sp2P3P4, Sm � P1P2P4P5

and Sm � P6P7P8 for x1 0;Rh i and x1 R; d=2h i,
respectively. The stresses, rp and rmi, derived from

the conditions, Wsrp
¼Wsp and Wsrmi

¼Wsmi (i = 1,2)

(see Eqs. 81–84), and accordingly inducing the same

influence as induced by the thermal stresses and thus

representing the thermal-stress induced strengthening

within the spherical particle and the cubic cell matrix,

as a resistance against compressive and tensile mechan-

ical loading for am[ap and am\ap, respectively, have

the forms

rp ¼ pb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 1þ 2s12p

s11p

� �s
; ð87Þ

rm1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
Wsm1

c18

r
; ð88Þ

rm2 ¼ �

ffiffiffiffiffiffiffiffiffiffiffi
Wsm2

c19

s
; ð89Þ

where Eqs. 88 and 89 are functions of x1 2 0;Rh i
(i = 1) and x1 2 R; d=2h i (i = 2), respectively, and

rm1ð Þx1¼R¼ rm2ð Þx1¼R (see Eqs. 82–84, 136, 137). The

signs + and – in Eqs. 88–90 are considered for am[ap

and am\ap, respectively.

With regard to the x1-dependences, the parameters

rm1, rm2 are considered to represent matrix micro-

strengthening in the intervals x1 2 0;Rh i,
x1 2 R; d=2h i [11], respectively, and consequently the

average value rm, representing the thermal-stress

induced strengthening in the cubic cell matrix, is

defined, regarding Eq. 3, as [17]

rm¼
2

d

Z R

0

rm1 dx1þ
Z d=2

R

rm2 dx1

 !

¼� 2

R

3v

4p

� �1=3 Z R

0

ffiffiffiffiffiffiffiffiffiffiffi
Wsm1

c18

r
dx1þ

Z d=2

R

ffiffiffiffiffiffiffiffiffiffiffi
Wsm2

c19

s
dx1

 !
;

ð90Þ

where the integrals can be derived for a concrete

isotropic particle-matrix system by a numerical method.

Isotropic one-particle-matrix system

As presented in the section ‘Isotropic multi-particle-

matrix system’, concerning the v-dependences of

thermal-stress related parameters of the SiC–Si3N4

multi-particle-matrix system in the interval

v 2 0; p=6h Þ, formulae related to the isotropic one-

particle-matrix system represented by one spherical

particle with the radius R embedded in the infinite

matrix, as transformation of those related to the

isotropic multi-particle-matrix system for v = 0, are

required to be derived.

Thermal stresses

Resulting from the analytical model presented in [15],

the radial and tangential stresses, acting in the spher-

ical particle (q = p) for r 2 0;Rh i and in the infinite

matrix (q = m) for r 2 R;1h Þ, rrq and ruq, rmq,

respectively, have the forms

rrp ¼ rup ¼ rmp ¼ �pb; ð91Þ

rrm ¼ �2rum ¼ �2rmm ¼ �pb
R

r

� �3

; ð92Þ

where r > 0 and r < 0 represent the tensile and

compressive stresses, respectively.

The compressive or tensile particle-matrix boundary

radial stress, pb[0 or pb\0, respectively, is derived

as [15]

pb ¼
1

c10

Z Ti

T

am � ap

� �
dT; ð93Þ

and Eqs. 11–14 are transformed for v = 0 to Eqs. 91–93

for pcð Þv¼0¼ 0. Considering aq to be temperature-

independent, the integral
R Ti

T aq dT is replaced by

aq Ti � Tð Þ.
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Temperature range of cooling process

With regard to the section ‘Temperature range of

cooling process’, the presented derivations are consid-

ered in the temperature range T 2 Tc;Tih i, and the

critical final temperature of a cooling process, Tc, can

be derived from

1

c10

Z Ti

Tc

am � ap

� �
dT

����
����� ryq ¼ 0; ð94Þ

for a concrete isotropic multi-particle-matrix system by

a numerical method, and considering aq (q = p,m) to

be temperature-independent, Tc has the form

Tc ¼ Ti � ryq
c10

am � ap

� �
�����

�����: ð95Þ

Elastic energy density

With regard to Eq. 20, and consequently to rij ¼ 0

(i 6¼ j) and the subscript transformations, 11! r,

22! u, 33! m, the elastic energy density of the

thermal stresses in the infinite matrix, wm, is derived as

wm ¼
3p2

b

4
s11m � s12mð Þ R

r

� �6

: ð96Þ

The elastic energy density of the thermal stresses in

the spherical particle, wp, is given by Eq. 21, consid-

ering the particle-matrix boundary radial stress, pb,

derived by Eqs. 93, 125.

Curve integral of elastic energy density

The curve integrals within the spherical cell of the

radius Rc !1, Wcm1 and Wcm2, as integrals of wm

(see Eq. 96) along the abscissae P4P5 and P7P8 in the

plane x1x3 in the positions x1 2 0;Rh i and

x1 2 R;Rch i (see Fig. 18), respectively, as the elastic

energy ‘curve’ density, equivalent to those along the

abscissae in the planes x1x2, x2x3 due to the isotropy

of the multi-particle-matrix system, are derived as

Wcm1 ¼
Z

P4P5

wm dx3

¼ 3Rp2
b

20
s11m � s12mð Þ 1� R

Rc

� �5
" #

¼Rc!1 3Rp2
b

20
s11m � s12mð Þ; ð97Þ

Wcm2 ¼
Z

P7P8

wm dx3

¼ 3Rp2
b

20
s11m � s12mð Þ R

x1

� �5

1� x1

Rc

� �5
" #

¼Rc!1 3Rp2
b

20
s11m � s12mð Þ R

x1

� �5

: ð98Þ

With regard to the term r–6 in Eq. 96, and due to the

isotropy of the one-particle-matrix system, the elastic

energy accumulated in the cubic cell matrix between

the points P2 and P3, and between the points P4 and P5,

is equal to that accumulated between the points at radii

r ¼ OP2j j ¼ R and r ¼ OP3j j ¼ Rc, and at the radii

r ¼ OP4j j ¼ x1 and r ¼ OP5j j ¼ Rc, for x1 2 0;Rh i
and x1 2 R;Rch i, respectively. Accordingly, the term

r�6 dx3 (see Eqs. 96, 97, 98) is replaced by r–6 dr, where

r 2 R; OP3j jh i and r 2 x1; OP4j jh i for x1 2 0;Rh i and

x1 2 R;Rch i, respectively.

The curve integral within the spherical particle,

Wcp, as an integral of wp along the abscissae P3P4 in

the plane x1x3 in the position x1 2 0;Rh i (see

Fig. 18), is given by Eq. 23, considering the particle-

matrix boundary radial stress, pb, derived by Eqs. 93,

125.

Particle and matrix crack initiation and formation

With regard to Eqs. 23, 97, Wcp þWcm1 and Wcm1

represent decreasing function of x1, depending on the

parameter R, and consequently the particle crack

exhibits a shape as shown in Figs. 8, 11.

Fig. 18 The abscissae P1P2P3P4P5 and P6P7P8 in the positions
x1 2 0;Rh i and x1 2 R;Rch i, respectively, in the spherical cell of
the radius Rc !1, containing the spherical particle of the
radius R. With regard to surface integrals of wp, wm and wm

energy density (see section ‘Surface integral of elastic energy
density’), P1P2P3P4P5 k x2x3 and P6P7P8 k x2x3 represents
planes, respectively
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Particle crack initiation and formation The critical

particle radii, Rp1 and Rp2, where Rp2[Rp1, as a

reason of the crack initiation and consequently the

crack formation in the particle from the particle centre,

O, in the position x1 ¼ 0, to the particle surface (see

Fig. 8), and as a reason of the particle crack tip on the

particle surface in the position x1 ¼ R, represent roots

of Eqs. 28 and 29, respectively, in the forms

Rp1 ¼
20s11p

10 s11p þ 2s12p

� �
þ s11m � s12m

KICp

pb

� �2

; ð99Þ

Rp2 ¼
20s11p

s11m � s12m

KICp

pb

� �2

: ð100Þ

The particle crack radius (see Fig. 8), rp, determin-

ing the particle crack tip position, representing a root

of Eq. 32, as a function of the variable x1 and the

parameter R 2 Rp1;Rp2

� �
, is derived as

rp

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2� 1

s11pþ2s12p

� �2
2s11p

KICp

pb

� �2

�R

10
s11m�s12mð Þ

" #2
vuut ;

ð101Þ

and the function, fp, describing the particle crack shape

in the intervals x1 2 0; rp

� �
and x1 2 0;Rh i for

R 2 Rp1;Rp2

� �
and R � Rp2 (see Fig. 8), is given by

Eqs. 33, 36 and 37, respectively.

Matrix crack initiation and formation The critical

particle radii, Rm1 and Rm2, as a reason of the crack

initiation and consequently the crack formation in the

matrix from the position x1 ¼ 0 to the position

x1 ¼ R, and as a reason of the matrix crack tip in the

position x1 ¼ R to the position x1[R (see Fig. 21),

represent roots of Eqs. 52 and 53, respectively, in the

forms

Rm1 ¼
20s11m

s11m � s12m

KICm

capb

� �2

; ð102Þ

Rm2 ¼
20s11m

10 s11p þ 2s12p

� �
þ s11m � s12m

KICm

capb

� �2

: ð103Þ

The matrix crack radii (see Fig.11), rm1 2 0;Rh i and

rm2[R, both for R[Rm, representing roots of Eqs. 56

and 75, as functions of the variable x1 and the

parameter R, for R 2 Rm1;Rm2h i and R � Rm2,

respectively, are derived as

rm1

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2� 1

s11pþ2s12p

� �2
2s11m

KICm

capb

� �2

�R

10
s11m�s12mð Þ

" #2
vuut ;

ð104Þ

rm2 ¼
s11m � s12m

20s11m

capbR3

KICm

� �2
" #1=5

; ð105Þ

and the matrix crack (see Fig. 21) is thus described by

Eqs. 57, 60, 61 and 76, 79 for x1 2 0; rm1h i and x1 2
R; rm2h i, related to R � Rm1 and Rm2, respectively.

Surface integral of elastic energy density

The surface integral, Wsp, of wp (see Eq. 21) over the

surface P2P3P4 k x2x3 (Fig. 18) is given by Eq. 81,

considering the particle-matrix boundary radial stress,

pb, derived by Eq. 93. Determining the surface integral

of the elastic energy density, the spherical particle is

considered to be embedded in the spherical cell of the

radius Rc (Fig. 18), and derived formulae then repre-

sent transformations of the integrals for Rc !1.

The surface integral, Wsm1, of wm (see Eqs. 93, 96)

over the surface P1P2P4P5 k x2x3 (Fig. 18), represent-

ing the elastic energy gradient within the spherical cell

matrix of the radius Rc !1 along the axis

x1 2 0;Rh i, Wsm1 ¼ @Wm=@x1, as the elastic energy

‘surface’ density, equivalent to that along the axes x2,

x3 due to the isotropy of the one-particle-matrix

system, has the form

Wsm1 ¼
Z

Sm

wm dSm ¼ 4

Z p=2

0

Z R1

R2

wmr23 dr23 dn

¼ 3pp2
bR2

8
s11m � s12mð Þ 1� R

Rc

� �4
" #

¼Rc!1 32
bR2

8
s11m � s12mð Þ; x1 2 0;Rh i; ð106Þ

and then, for x1 2 0;Rh i, dSq ¼ r23 dr23 dn is an

infinitesimal part in the point P of the spherical

particle (q = p) or the spherical cell matrix

(q = m) on the surfaces Sp � P2P31P32 k x2x3 or

Sm � P1P2P32P33 k x2x3, P2P31P32;P1P2P32P33 � P1

P2P3P4P5 (Fig. 18), for r23 2 0;R2h i or r23 2 R2;R1h i
(Fig. 19), respectively, where r23 ¼ P31Pj j, P31P k
x2x3, R ¼ OP2j j ¼ OP32j j, Rc ¼ OP1j j ¼ OP33j j
(Fig. 15), R1 ¼ P31P1j j ¼ P31P33j j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

c � x2
1

q
, R2 ¼

P31P2j j ¼ P31P32j j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

p � x2
1

q
, P31P1;P31P2 k x2x3;
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and the coordinate r in Eq. 96 is derived as

r ¼ OPj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

23 þ x2
1

q
. Due to the isotropy of the

particle-matrix system, the angle n is sufficient to be

varied in the interval n 2 0; p=2h i.
The surface integral, Wsm2, of wm (see Eqs. 93, 96)

over the surface P6P7P8 k x2x3 (Fig. 18), representing

the elastic energy gradient within the spherical cell of

the radius Rc !1 along the axis x1 2 R;Rch i
(Fig. 18), Wsm2 ¼ @Wm=@x1, equivalent to those along

the axes x2, x3, has the form

Wsm2 ¼
Z

Sm

wsm dSm ¼ 4

Z p=2

0

Z R68

0

wmr68 dr68 dn

¼ 3R2pp2
b

8
s11m � s12mð Þ R

x1

� �4

1� R

Rc

� �4
" #

¼Rc!1 3pp2
bR2

8
s11m � s12mð Þ R

x1

� �4

;

x1 2 R;Rch i; Rc !1;
ð107Þ

and then, for x1 2 R;Rch i, dSm ¼ r68 dr68 dn is an

infinitesimal part in the point P of the spherical

cell matrix on the surface Sm62P72P73P63 k x2x3

(Fig. 20) for r68 ¼ P72Pj j 2 0;R68h i, respectively, where

P62P72P73P63 � P6P7P8 (Fig. 18); P72P k x2x3; R68 ¼
P72P68j j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

c � x2
1

q
; P72P68 k x2x3; and the coordinate

r in Eq. 96 is derived as r ¼ OPj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

68 þ x2
1

q
. Due to

the isotropy of the particle-matrix system, the angle n is

sufficient to be varied in the interval n 2 0; p=2h i.
Consequently, the maximum, Wsmax ¼ Wspþ

�
Wsm1Þx1¼0, derived from Eqs. 81, 106 for x1 ¼ 0, has

the form

Wsmax ¼
3R2pp2

b

8
4 s11p þ 2s12p

� �
þ s11m � s12m

� �
: ð108Þ

Particle and matrix thermal-stress induced strengthening

The elastic energy gradients within the spherical cell

matrix along the axis x1, Wsrm1
and Wsrm2

, equivalent

to those along the axes x2, x3 due to the isotropy of the

one-particle-matrix system, induced by the stresses,

rm1 and rm2, constant on the plane perpendicular to

the axis x1, representing integrals of wrm
over the

surfaces P2P3P4 and P1P2P4P5 for x1 0;Rh i and

x1 R;Rch i, respectively, have the forms

Wsrm1
¼
Z

Sm

wrm dSm

¼ 11mr2

2
R2

c � R2
� �

; x1 0;Rh i; Rc !1; ð109Þ

Wsrm2
¼
Z

Sm

wrm dSm

¼ 11mr2

2
R2

c � x2
1

� �
; x1 R;Rch i; Rc !1: ð110Þ

With regard to Rc !1, the thermal-stress induced

strengthening in the infinite matrix of the isotropic

one-particle-matrix system, rmi (i = 1,2), derived from

the condition, Wsrmi
¼Wsmi, is derived as

rmi ¼ 0; ð111Þ

and the thermal-stress induced strengthening in the

spherical particle of the isotropic one-particle-matrix

Fig. 20 The plane P6P72P73 k x2x3 of the spherical cell matrix of
the radius Rc !1, included, along with the point P, in the
plane P6P7P8 k x2x3 in the position x1 2 R;Rch i (Fig. 18)

Fig. 19 The planes P2P31P32 k x2x3 and P1P2P32P33P23 k x2x3

of the spherical particle of the radius R and of the spherical cell
matrix of the radius Rc !1, included, along with the point P, in
the plane P1P2P3P4P5 k x2x3 in the position x1 2 0;Rh i
(Fig. 18)
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system, rp, is given by Eq. 87, considering the particle-

matrix boundary radial stress, pb, derived by Eq. 93.

Application to SiC–Si3N4 multi-particle-matrix system

Compared to high strength and wear resistance,

ceramic materials are characterized by low fracture

toughness, usually strengthened by presence of parti-

cles of higher thermal expansion coefficient than that

of a matrix. Increasing fracture toughness of the Si3N4

matrix by presence of the SiC particles of higher

thermal expansion coefficient than that of the Si3N4

matrix, ap[am (Table 1), the SiC particle and the

Si3N4 matrix are thus acted by the tensile thermal

stresses, rrp ¼ r ¼ rmp ¼ �pb[0 (see Eqs. 11, 14) (see

Fig. 21), and by tensile and compressive radial and

tangential thermal stresses, rrm[0 and rum ¼ rmm\0

(see Eqs. 12–14) (see Fig. 22), respectively.

Representing a resistance against tensile mechanical

loading, the tensile radial thermal stress rrm[0 in the

Si3N4 cubic cell matrix, as a reason of the Si3N4

fracture toughness increase, and the compressive

tangential radial stresses rum ¼ rmm\0, both decrease

within the cubic cell matrix (see Fig. 22), the former

from the maximal value on the particle-matrix bound-

ary, rrmð Þr¼R¼ �pb, where the particle-matrix bound-

ary radial stress, –pb, as a function of the particle

volume fraction, v 2 0; p=6h Þ, exhibits the maximum

for the critical particle volume fraction, vc ¼ 0:132 (see

Fig. 21). Similarly, the tensile thermal stresses

rrp ¼ rup ¼ rmp ¼ �pb[0 in the SiC particle repre-

sents a resistance against compressive mechanical

loading. Resulting from experimental results [11, 16],

the SiC–Si3N4 multi-particle-matrix system exhibits a

maximal fracture toughness for the SiC particle volume

fraction, v � 0:15 [11, 16], corresponding to the

calculated value, vc ¼ 0:132.

With regard to the yield stress in tension of the SiC

particle, rytp ¼ 1000 MPa, and to the initial tempera-

ture of a cooling process, Ti ¼ 1500 C [11, 16], the

v-dependence of the critical final temperature of a

cooling process, Tc (see Eq. 16), exhibits values

<–273.15 �C in the interval v 2 0; p=6h Þ, and the

presented derivations are thus considered in the

temperature range T 2 �273:15; 1500h iC.

With regard to the material constants listed in

Table 1 [11, 16], the dependences in Figs. 21, 22 and

the following ones are generated on the condition of

the linear T-dependence of the thermal expansion

coefficient of the particle (q = p) and the matrix

(q = m), aq, derived the form

aq ¼
aq2 T � T1ð Þ � aq1 T � T2ð Þ

T2 � T1
; ð112Þ

where aq1 and aq2 are related to the temperature

T1 ¼ 20 C and T2 ¼ 1100 C, respectively, for the

particle volume fraction equal to critical,

v ¼ vc ¼ 0:132 (see Fig. 21), for the average SiC

particle radius, R = 250 nm, consequently for the

inter-particle distance, d = 794 nm, for the initial and

different temperature of a cooling process,

Ti ¼ 1500 C and T ¼ 20; 400; 800; 1200 C, respectively,

and regarding the interval v 2 0; p=6h Þ, the formulae

presented in the section ‘Isotropic one-particle-matrix

Fig. 21 The tensile radial and tangential thermal stresses in the
SiC spherical particle, rrp[0 and r ¼ rmp[0, respectively,
equal to the particle-matrix boundary radial stress, –pb (see
Eqs. 4, 7), and the critical final temperature of a cooling process,
Tc, as functions of the particle volume fraction, v 2 0;p=6h Þ,
where Ti and T is the initial and final temperature of a cooling
process, respectively. The pb � v dependence exhibits an
extreme for the critical particle volume fraction vc ¼ 0:132

Table 1 The material constants of the SiC particle and the Si3N4 matrix [11, 16, 18]

E (GPa) l aa (10–6 K–1) ryt (GPa) ryc (GPa) KIC (MPa m1/2) R (nm)

SiC 360 0.19 4.14/5.05 1 5 3.25 10–500
Si3N4

b 310 0.235 2.35/3.75 1 5 5.25 –

the Young’s modulus, E; the Poisson’s number, l; the thermal expansion coefficient, a; the yield stress in tension and compression, ryt

and ryc, respectively; the fracture toughness, KIC; the SiC particle radius and volume fraction, R and v, respectively
a 20 �C/1,100 �C
b v = 0.05–0.3
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system’ are considered for v = 0. Furthermore, the

v-dependences of the investigated parameters also

result from the fact that a real multi-particle-matrix

system is characterized by different local v, as a

consequence of aperiodically distributed particles of

different dimensions.

Resulting from the tensile thermal stresses in the

SiC particle and consequently with regard to the

particle crack formation, the SiC particle radius can

be varied within the intervals, R 2 0;Rp1

� �
and

R 2 0;Rp2

� �
, for v 2 0; v0h i and v 2 v0; p=6h i (see

Fig.23a), where Rp1 and Rp2 (see Eqs. 30, 31) are

reasons of the particle crack formation from the

particle centre, O, to the particle surface, and vice

versa (see Figs. 8, 9), respectively, and v0 ¼ 0:487. In

addition, Fig. 23b shows the T-dependence of

Rp0 ¼ Rp1

� �
v¼v0
¼ Rp2

� �
v¼v0

for v ¼ v0, as a reason of

the particle crack formation simultaneously from the

particle centre, O, and the particle surface (see

Fig. 10).

Although, the critical particle radii, Rp1, Rp2, are

extremely high compared to the SiC particle radius of

the interval, R 2 10; 500h i nm, as an illustration,

Fig. 24 shows the function, fp (see Eq. 33), describing

the particle crack shape in the interval x1 2 0; rp

� �
, in

the form

fp ¼ 3:993� 10�5 � 1:568x1 þ 3:694� 107x3
1

þ 6:684� 1015x5
1 þ 8:947� 1022x7

1 þ 1:21� 1032x9
1

þ 1:067� 1040x11
1 . . . ð113Þ

and accordingly the contribution of the term xn
1 for

n � 3 is neglecting, where rp ¼ 25:94 lm is derived

from Eq. 32 by a numerical method for v ¼ vc ¼ 0:132,

Rp1 ¼ 49:7 lm, R ¼ 55 lm. The quasi-linear shape

Fig. 23 The critical SiC particle radii, Rp1 and Rp2 (a) (see
Eqs. 23, 24), as functions of the particle volume fraction,
v 2 0; v0h i and v 2 v0;p=6h Þ, respectively, and the critical SiC
particle radius, Rp0 ¼ Rp1

� �
v¼v0
¼ Rp2

� �
v¼v0

(b), as a function of

the final temperature of a cooling process, T 2 20; 1500h iC for
v0 = 0.487, where Ti is the initial temperature of a cooling
process

Fig. 22 The tensile radial (a) and compressive tangential (b)
thermal stresses in the Si3N4 cubic cell matrix, rrm[0 and
rum ¼ rmm\0 (see Eqs. 5–7), respectively, as functions of the
position r ¼ x1 2 R;d=2h i (see Figs. 3–5), for the particle

volume fraction equal to critical, v ¼ vc ¼ 0:132 (see Fig. 21),
where Ti and T is the initial and final temperature of a cooling
process, respectively; R is the particle radius; and d is the inter-
particle distance
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corresponds to that from experimental results [4, 5, 11,

16].

If a magnetic domain wall or a dislocation move

from the cubic cell surface to the particle-matrix

boundary, the elastic energy gradient within the SiC–

Si3N4 cubic cell, Ws ¼Wsp þWsm1 þWsm2 (see

Eqs. 81–84), as an increasing function of x1 0; d=2h i

(Fig. 25), and the maximum for x1 ¼ 0, Wsmax (see

Eqs. 85, 108), as a function of the spherical particle

volume fraction v 2 0; p=6h Þ, exhibiting the maximum

for v = 0.096 (Fig. 25d), represent a copybook shape of

an energy barrier (Fig. 25c) [11] and its height,

respectively, influencing magnetic domain and disloca-

tion structure [11]. The elastic energy gradient, Wsm2,

derived in the interval x1 R; d=2h i by Eqs. 83 and 84

exhibits identical courses. With regard to Wsmax / R2,

the v-dependence of Wsmax is related to the spherical

particle radius R = 1.

The elastic energy gradients, Wsm1 and Wsm2, corre-

spond to thermal-stress induced strengthening within

the Si3N4 cubic cell matrix, rm1 and rm2, in the intervals

x1 2 0;Rh i and x1 2 R; d=2h i (see Eqs. 87–89) (Fig. 26),

respectively. The thermal-stress induced strengthening

in the SiC spherical particle, rp (see Eq. 87), and the

average thermal-stress induced strengthening in the

Si3N4 cubic cell matrix, rm (see Eq. 90), as functions of

the spherical particle volume fraction, v 2 0; p=6h Þ, are

presented in Fig. 27, where rp

�� �� exhibits the maximum

for v ¼ vc ¼ 0:132, and rm is independent on the

parameter R, as resulted from the integration in Eq. 90)

by a numerical method. With regard to am\ap, the

parameters, rm1, rm2 and rm, represent micro- and

macro-strengthening against tensile mechanical load-

ing, respectively. The rm � v dependence for the

SiC–Si3N4 multi-particle-matrix system is in a good

Fig. 24 The function, fp, describing the SiC particle crack in the
interval x1 2 0; rp

� �
(see Eqs. 25, 26, 29) for the particle volume

fraction equal to critical, v ¼ vc ¼ 0:132 (see Fig. 21), and for
the SiC particle radius, R[ Rp1

� �
v¼vc

(see Fig. 23), where Ti and
T is the initial and final temperature of a cooling process,
respectively

Fig. 25 The elastic energy
gradient of the thermal
stresses in the SiC spherical
particle and the Si3N4 cubic
cell matrix, Wsp (a) and Wsm1,
Wsm2 (b), as functions of the
position x1 2 0;Rh i and
x1 2 0;Rh i, x1 2 R;d=2h i
(Fig. 3), respectively, along
with the elastic energy
gradient of the thermal
stresses in the SiC–Si3N4

cubic cell,
Ws ¼Wsp þWsm1 þWsm2 (c).
The maximum of the elastic
energy gradient of the
thermal stresses in the SiC–
Si3N4 cubic cell, Wsmax=R2, as
a function of the spherical
particle volume fraction,
v 2 0;p=6h Þ (d)
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agreement with experimental results adverting to the

tensile strength increase in the range DRm = 0.3–

0.35 GPa for v � 0:15 and T ¼ 20 C [11, 16].

Conclusions

The paper is the continuation of derivations published

in [13, 15], presenting the thermal stresses in the

isotropic multi- and one-particle-matrix systems,

respectively, originating during a cooling process as a

consequence of the difference of thermal expansion

coefficients between the particle and the matrix. The

isotropic multi- and one-particle-matrix systems are

represented by the periodically distributed spherical

particles embedded in the infinite matrix imaginarily

divided into cubic cells, containing one central particle

[13], and by one spherical particle embedded in the

infinite matrix [15], respectively.

Contributed to the results published in [13, 15] (see

subsections ‘Thermal stresses’), results of the pre-

sented derivations related to isotropic multi- and one-

particle-matrix systems are as follows:

– The initial and critical final temperature of a cooling

process between which the isotropic multi-particle-

matrix systems are acted by elastic thermal stresses

are derived (see subsections ‘Temperature range of

cooling process’).

– The thermal-stress induced elastic energy density in

a point, and along a curve in the spherical particle, in

the cubic cell matrix and in the infinite matrix of the

isotropic multi-particle-matrix systems are derived

(see subsections ‘Elastic energy density’, ‘Curve

integral of elastic energy density’).

– Resulting from the ‘curve’ elastic energy density, the

subsections ‘Particle and matrix crack initiation and

formation’, devoted to the particle crack formation

include

– • the condition concerning a direction of the crack

formation in the spherical particle of the isotropic

multi-particle-matrix systems is derived,

– • the critical particle radii, as a reason of the crack

formation in the spherical particle of the isotropic

multi-particle-matrix system are derived,

– • the functions describing cracks in the spherical

particle of the isotropic multi-particle-matrix

systems are derived.

– The thermal-stress induced elastic energy density on

a surface in the spherical particle, in the cubic cell

matrix and in the infinite matrix of the isotropic

particle-matrix systems are derived (see subsections

‘Surface integral of elastic energy density’).

– Resulting from the ‘surface’ elastic energy density,

the thermal-stress induced strengthening in the

spherical particle, in the cubic cell matrix and in

the infinite matrix of the isotropic particle-matrix

systems are derived (see subsections ‘Particle and

matrix thermal-stress induced strengthening’).

Applying the derived formulae to the SiC–Si3N4

multi-and one multi-particle-matrix systems, the main

results included in the section ‘Application to SiC–

Si3N4 multi-particle-matrix system’ are as follows:

– The SiC spherical particle thermal stresses, the

particle-matrix boundary radial stress and the critical

final temperature of a cooling process, as functions

of the particle volume fraction, v, are presented (see

Fig. 21).

– The critical SiC particle volume fraction, vc ¼ 0:132

(see Fig. 21), corresponding to maximal calculated

thermal stresses, is in an excellent agreement with the

SiC particle volume fraction, v � 0:15, correspond-

ing to a maximal fracture toughness as obtained from

published experimental results [11, 16].

– The thermal stresses, as functions of the position in

the Si3N4 cubic cell matrix, are presented for the

v = vc = 0.132 and for the average SiC particle

radius, R = 250 nm (see Fig. 22).

– The critical SiC particle radii, as reasons of the SiC

particle crack formation and as functions of v, are

presented along with the temperature dependence of

the SiC critical particle radius (see Fig. 23).

– The function describing the particle crack for the

critical particle volume fraction and for the SiC

particle radius greater than critical is presented (see

Fig. 24).

– The thermal-stress induced elastic energy gradient,

as a function of the position in the SiC–Si3N4 cubic

Fig. 26 The thermal-stress micro-strengthening in the Si3N4

cubic cell matrix, rm1 and rm2, as functions of the position
x1 2 0;Rh i and x1 2 R; d=2h i (Fig. 3), respectively
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cell, is presented (Fig. 25a, b, c) along with the

v-dependence of the gradient maximum (Fig. 25d).

– The thermal-stress induced strengthening, as a func-

tion of the position in the Si3N4 cubic cell matrix, is

presented (Fig. 26) along with the v-dependences of

the thermal-stress induced strengthening in the SiC

spherical particle and the average thermal-stress

induced strengthening in the Si3N4 cubic cell matrix

(Fig. 27), being in a good agreement with published

experimental results [11, 16].
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Appendix

The elastic moduli of the particle (q = p) and the

matrix (q = m), sq, have the forms

s11q ¼
1

Eq
; ð114Þ

s12q ¼ �
lq

Eq
; ð115Þ

where Eq and lq are the Young’s modulus and Pois-

son’s number, respectively.

The coefficient c is derived as

c1 ¼
3p s11m þ s12mð Þ

2 p� 6vð Þ ; ð116Þ

c2 ¼ c1 þ s11p þ 2s12p � s11m þ 2s12mð Þ; ð117Þ

c3 ¼
Z p=4

0

cos4 uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos2 u

p � 1

3

cos2 uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cos2 u

p
 !3

2
4

3
5 du;

ð118Þ

where the coefficient c3 can be derived by the Taylor

series for the integrated function. Consequently, after

integration of the Taylor series in terms of u� u0ð Þn
about the point u0 ¼ 0, the coefficient c3 ¼ 0:337497

for n = 100;

c4 ¼2v s11p þ 2s12p

� � c1

c2

� �2

þ 1

p� 6vð Þ2
2p2 1� vð Þ s11m þ 2s12mð Þ 1� 6vc1

pc2

� �2
"

þv s11m � s12mð Þ p2 � 36vc3

� �
1� c1

c2

� �2
#
;

ð119Þ

c5 ¼
2c1 s11p þ 2s12p

� �
c2

þ 1

p� 6vð Þ2
12p 1� vð Þ s11m þ 2s12mð Þ 1� 6vc1

pc2

� �


þ s11m � s12mð Þ p2 � 36vc3

� �
1� c1

c2

� ��
;

ð120Þ

c6 ¼
p c2c4 þ vc5 c1 � c2ð Þ½ 	
p� 6vð Þ c2c4 þ vc1c5ð Þ ; ð121Þ

Fig. 27 The thermal-stress induced macro-strengthening in the SiC spherical particle, rp, and the average thermal-stress induced
strengthening in the Si3N4 cubic cell matrix, rm, as functions of the spherical particle volume fraction, v 2 0; p=6h Þ
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c7 ¼
c2c4 þ vc1c5

c2
2c4

; ð122Þ

c8 ¼
v pc2c5 � 6 c2c4 þ vc1c5ð Þ½ 	

p� 6vð Þ c2c4 þ vc1c5ð Þ ; ð123Þ

c9 ¼ 5v2 s11m þ 2s12mð Þ c5 6vc1 � pc2ð Þ þ 6c2c4½ 	2
n

� s11p þ 2s12p

� �
p� 6vð Þ2 c2c4 þ vc1c5ð Þ2

o

þ 16p2 s11m � s12mð Þ vc5 c1 � c2ð Þ þ c2c4½ 	2

� 3v

4p

� �5=3

1� 4pð Þ1=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pð Þ2=3þ4 3vð Þ2=3

q
2
64

3
75

58><
>:

9>=
>;;

ð124Þ

c10 ¼ s11p þ 2s12p þ
1

2
s11m � s12mð Þ; ð125Þ

c11 ¼
3pþ 8

2R4

3v

4p

� �4=3

; x1 ¼ 0; ð126Þ

c11 ¼
Z p=4

0

4 3vð Þ2=3cos2 n

R2 4pð Þ2=3þ4x1 3vð Þ2=3cos2 n

" #2

dn;

x1 2 0;
d

2

� 

;

ð127Þ

where the coefficient c11 for x1 2 0; d=2ð i can be

derived for a concrete isotropic particle-matrix system

by the Taylor series for the integrated function in terms

of n� n0ð Þn about the point n0 ¼ 0;

c12 ¼ 3u73 þ
2x1R 12pvð Þ1=3 3R2 4pð Þ2=3þ20x2

1 3vð Þ2=3
h i

R2 4pð Þ2=3þ4x2
1 3vð Þ2=3

h i2
;

ð128Þ

c13 ¼
Z u73

0

m6 cos4 u du; ð129Þ

c14 ¼
Z u22

0

R4 4pð Þ4=3cos5 u

R2 4pð Þ2=3cos2 uþ 4x2
1 3vð Þ2=3

h i2
du

¼ R 4pð Þ1=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 4pð Þ2=3þ4x2

1 3vð Þ2=3
q R2 4pð Þ2=3þ3x2

1 3vð Þ2=3

R2 4pð Þ2=3þ2x2
1 3vð Þ2=3

(

� 2x1

R

� �2
3v

4p

� �2=3
R2 4pð Þ2=3þ3x2

1 3vð Þ2=3

R2 4pð Þ2=3þ4x2
1 3vð Þ2=3

� ln 1þ 1

2

R

x1

� �2
4p
3v

� �2=3
" #)

; ð130Þ

c15 ¼
Z u73

0

R2 4pð Þ2=3cos5 u

R2 4pð Þ2=3cos2 uþ 4x2
1 3vð Þ2=3

du

¼ 3vð Þ1=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 4pð Þ2=3þ4x2

1 3vð Þ2=3
q R2 4pð Þ2=3�4x2

1 3vð Þ2=3

R 12pvð Þ1=3

(

� 4pR3

3 3vð Þ1=3 R2 4pð Þ2=3þ4x2
1 3vð Þ2=3

h i

þ 6vx4
1

pR3
ln 1þ 1

2

R

x1

� �2
4p
3v

� �2=3
" #)

; ð131Þ

c16 ¼
Z u73

0

4pð Þ4=3R4 cos7 u

R2 4pð Þ2=3cos2 uþ 4x2
1 3vð Þ2=3

h i2
du

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 4pð Þ2=3þ4x2

1 3vð Þ2=3
q R2 4pð Þ2=3�8x2

1 3vð Þ1=3

R 4pð Þ1=3

(

þ 3R4 4pð Þ4=3�16x4
1 3vð Þ4=34R 4pð Þ1=3

R2 4pð Þ2=3þ2x2
1 3vð Þ2=3

h i

� 4pR3

3 R2 4pð Þ2=3þ4x2
1 3vð Þ2=3

h i

þ
2R5 4pð Þ5=3 R4 4pð Þ4=3�6x4

1 3vð Þ4=3
h i

R2 4pð Þ2=3þ4x2
1 3vð Þ2=3

h i4

� ln 1þ 1

2

R

x1

� �2 4p
3v

� �2=3
" #)

; ð132Þ

c17 ¼
2x1

R

3v

4p

� �1=3

c14
2x1

R

� �2 3v

4p

� �2=3

þ4c15 � c16

" #

þ 3pc12

16
� 3c13; ð133Þ

where the coefficient c13 can be derived for a concrete

isotropic particle-matrix system by the Taylor series for

the integrated function in terms of u� u0ð Þn about the

point u0 ¼ 0;

u73 ¼ arctan
R

2x1

4p
3v

� �1=3
" #

; ð134Þ

m6 ¼ arctan
2x1

R cos u
3v

4p

� �1=3
" #

; ð135Þ
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c18 ¼
s11m

2
R2 4p

3v

� �2=3

�p R2 � x2
1

� �" #
; x1 2 0;Rh i;

ð136Þ

c19 ¼
s11mR2

2

4p
3v

� �2=3

: ð137Þ
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Electrotech Inform 2(3):96
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